No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The capability of hydrogen to passivate nitrogen in dilute nitrides is exploited to in-plane engineer the electronic properties of Ga(AsN)/GaAs heterostructures. Two methods are presented: i) by deposition of hydrogen-opaque metallic masks on Ga(AsN) and subsequent hydrogen irradiation, we artificially create zones of the crystal having the band gap of untreated Ga(AsN) surrounded by GaAs-like barriers; ii) by employing an intense (∼100 nA) and narrow (∼100 nm) beam of electrons, we dissociate the complexes formed by N and H in a spatially delimited part of a hydrogenated Ga(AsN) sample. As a consequence, in the spatial regions irradiated by the electron beam, hydrogenated Ga(AsN) recovers the smaller energy gap it had before hydrogen implantation.