Published online by Cambridge University Press: 10 February 2011
We have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures (>1473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the α+γ two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5–10µm) which are crystallographicaly tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the γphase with few α2 phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the α → α+γ transformation above 1573K. Instead, the feathery structure formation should be attributed to the non-equilibrium α → γtransformation which occurs at high-temperatures with a small degree of supercooling. We discuss this interesting phase transformation in terms of the α→γ massive transformation, based on the continuous-coolingtransformation (CCT) diagram constructed for the present alloy.