Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:06:46.908Z Has data issue: false hasContentIssue false

Hierarchical Biomaterials Mechanics of Bone and Bone Substitutes

Published online by Cambridge University Press:  31 January 2011

Christian Hellmich
Affiliation:
christian.hellmich@tuwien.ac.at, Vienna University of Technology, Karlsplatz 13/202, Vienna, A-1040, Austria
Andreas Fritsch
Affiliation:
andreas.fritsch@tuwien.ac.at, Vienna University of Technology, Vienna, Austria
Luc Dormieux
Affiliation:
dormieux@lmsgc.enpc.fr, Ecole des Ponts ParisTech, Marne-la-Vallee, France
Get access

Abstract

Biomimetics deals with the application of nature-made ‘design solutions’ to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand ‘building plans’ inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties, reveals the following design principles: The elementary component ‘collagen’ induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100 nm-scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nano-composite, unless the ‘collagen reinforcement’ breaks. Bone replacement materials should mimic these ‘microstructural mechanics’-features as closely as possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hill, R. J. Mech. Phys. Solids 11, 357 (1963).Google Scholar
2 Suquet, P. (Ed.), Continuum micromechanics (Springer, Wien-New York, 1997).Google Scholar
3 Zaoui, A. J. Eng. Mech. 128, 808 (2002).Google Scholar
4 Dvorak, G.J. Proc. Royal Soc. London Ser. A437, 311 (1992).Google Scholar
5 Eshelby, J.D. Proc. Royal Soc. London Ser. A241, 376 (1957).Google Scholar
6 Laws, N. J. Elasticity 7, 91 (1977).Google Scholar
7 Gould, S. and Lewontin, R. Proc. Royal Soc. London Ser. B205, 581, (1979).Google Scholar
8 Lees, S. Connective Tissue Res Res. 16, 281 (1987).Google Scholar
9 Miller, A. Phil. Trans. Royal Soc. London Ser. B304, 455 (1984).Google Scholar
10 Weiner, S. and Wagner, H.D., Annual Rev. Mat. Sci. 28, 271 (1998).Google Scholar
11 Katz, J.L. and Ukraincik, K. J. Biomech Biomech. 4, 221 (1971).Google Scholar
12 Yao, H. Ouyang, L. and Ching, W. W. Y. J. Am. Ceramic Soc. 90, 3194 (2007).Google Scholar
13 Akao, M. Aoki, H. and Kato, K. J. Mater. Sci. 16, 809 (1981).Google Scholar
14 Shareef, M. Messer, P. and Noort, R. Biomat. 14, 69 (1993).Google Scholar
15 Fritsch, A. Dormieux, L. Hellmich, C. and Sanahuja, J., J. Biomed Biomed. Mat. Res. 88A, 149 (2009).Google Scholar
16 Fritsch, A. Hellmich, C. and Dormieux, L. J. Theor. Biol. 260, 230 (2009).Google Scholar
17 Cusack, S. and Miller, A. J. Molec. Biol. 135, 39 (1979).Google Scholar
18 Sun, Y. Y.L. Luo, Z. Z. P. Fertala, A. and An, K. K. N. Biochem. Biophys. Res. Comm. 295, 382, (2002).Google Scholar
19 Gentleman, E. Lay, A.N. Dickerson, D.A. Nauman, E.A. Livesay, G.A. and Dee, K.C. Biomat. 24, 3805 (2003).Google Scholar
20 Buehler, M.J. J. Mech. Behavior Biomed. Mat. 1, 59 (2008).Google Scholar
21 Bilaniuk, N. and Wong, G. S. K. J. Acoustical Soc. America 93, 1609 (1993).Google Scholar
22 Fritsch, A. and Hellmich, C. J. Theor. Biol. 244, 597 (2007).Google Scholar
23 Lees, S. Ahern, J.M. and Leonard, M. J. Acoustical Soc. America 74, 28 (1983).Google Scholar
24 Hodge, A.J. and Petruska, J.A. in Aspects of Protein Structure Structure, edited by Ramachandra, G.N., (Academic Press, London and New York, 1963), pp. 289300.Google Scholar
25 Hellmich, C. and Ulm, F.J. Biomech. Modeling Mechanobiol. 2, 21 (2003).Google Scholar
26 Rosen, V. Benezra, Hobbs, L.W. and Spector, M. Biomat. 23, 921 (2002).Google Scholar
27 Epple, M. Z. Kardiologie 90 (Suppl. 3):III/64 (2001).Google Scholar
28 Prostak, K.S. and Lees, S. Calcified Tissue Int. 59, 474 (1996).Google Scholar
29 Kupfer, H. Hilsdorf, H.K. and Rusch, H. ACI Journal 66, 656 (1969).Google Scholar
30 Bhowmik, R. Katti, K.S. and Katti, D.R. J. Mat. Sci. 42, 8795 (2007).Google Scholar
31 Bhowmik, R. Katti, K. S. and Katti, D.R. J. Eng. Mech. 135, 413 (2009).Google Scholar
32 Zahn, D. and Hochrein, O. Phy. Chemistry Chemical Physics 5, 4004 (2003).Google Scholar
33 Zahn, D. Hochrein, O. Kawska, A. Brickmann, J. and Kniep, R. J. Mat. Sci. 2, 8966 (2007).Google Scholar
34 Buehler, M.J. Proc. Nat. Acad. Sci. USA., 103:12285 (2006).Google Scholar
35 Mano, J.F. Vaz, C.M. Mendes, S.C. Reis, R.L. and Cunha, A.M. J. Mat. Sci.: Mat. Med. 10, 857 (1999).Google Scholar
36 Verma, D. Katti, K. and Katti, D, Annals Biomed. Eng. 36, 1024 (2008).Google Scholar
37 Catledge, S.A. Clem, W.C. Shrikishen, N. Chowdhury, S. S. Stanishevsky, A.V. Koopman, M. and Vohra, Y.K. Biomed. Mat. 2, 142 (2007).Google Scholar
38 Du, C. Cui, F.Z. Zhu, X.D. and Groot, K. de, J. Biomed. Mat. Res. 44A, 407 (2004).Google Scholar
39 Ficai, A. Andronescu, E. Voicu, G. Manzu, D. and Ficai, M. Mat. Sci. Eng. C29, 217 (2009).Google Scholar
40 Green, D.W. Biomed. Mat. 3, 034010 (2008).Google Scholar
41 Hartgerink, J.D. Beniash, E. and Stupp, S.I. Science 294, 1684 (2001).Google Scholar
42 Wahl, D.A. and Czernuszka, J.T. Europ. Cells Mat. 11, 43 (2006).Google Scholar
43 With, G. De, van Dijk, H.J.A., Hattu, N. and Prijs, K. J. Mat. Sci. 16, 1592 (1981).Google Scholar
44 Martin, R.I. and Brown, P.W. J. Mat. Sci.: Mat. Med. 6, 138 (1995).Google Scholar
45 Han, Y. Li, S. Wang, X. and Chen, X. Mat. Res. Bul. 39 (2004).Google Scholar
46 Jäger, Ch., Welzel, T. Meyer-Zaika, W. and Epple, M. Magn. Resonance Chem. 44, 573 (2006).Google Scholar
47 Khanna, R. Katti, K.S. and Katti, D.R. J. Eng. Mech. (ASCE) 135, 468 (2009).Google Scholar
48 Poinern, G.E. Brundavanam, R.K. Mondinos, N. and Jiang, Z. Z. T. Ultrasonics Sonochem. 16, 469 (2009).Google Scholar
49 Tampieri, A. Celotti, G. Landi, El. Sandri, M. Roveri, N. and Falini, G., J. Biomed. Mat. Res. 67A, 618 (2003).Google Scholar
50 Orgel, J.P.R.O. Irving, T.C. Miller, A. and Wess, T.J. Proc. Nat. Acad. Sci. USA 103, 9001 (2006).Google Scholar
51 Landis, W.J. Song, M.J. Leith, A. McEwen, L. and McEwen, B.F. J. Struct. Biol. 110, 39 (1993).Google Scholar
52 Su, X. Sun, K. Cui, F.Z. and Landis, W. Bone 32, 150 (2003)Google Scholar
53 Lees, S. Cleary, P. Heeley, J.D. and Gariepy, E.L. J. Acoust. Soc. America 66, 641 (1979).Google Scholar