Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T14:05:54.313Z Has data issue: false hasContentIssue false

Growth, structure and properties of magnetron sputtered ultra-thin WTi films

Published online by Cambridge University Press:  02 May 2013

A. Le Priol
Affiliation:
Institut P’, CNRS-University of Poitiers, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope Chasseneuil, France Sagem Défense Sécurité, 72-74 rue de la Tour Billy, BP72, 95101 Argenteuil, France
E. Le Bourhis
Affiliation:
Institut P’, CNRS-University of Poitiers, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope Chasseneuil, France
P.-O. Renault
Affiliation:
Institut P’, CNRS-University of Poitiers, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope Chasseneuil, France
L. Simonot
Affiliation:
Institut P’, CNRS-University of Poitiers, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope Chasseneuil, France
G. Abadias
Affiliation:
Institut P’, CNRS-University of Poitiers, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope Chasseneuil, France
P. Muller
Affiliation:
Sagem Défense Sécurité, 72-74 rue de la Tour Billy, BP72, 95101 Argenteuil, France
H. Sik
Affiliation:
Sagem Défense Sécurité, 72-74 rue de la Tour Billy, BP72, 95101 Argenteuil, France
Get access

Abstract

Refractory metal alloy WTi films were elaborated by magnetron sputtering from an alloyed target (W:Ti ∼ 70:30 at%). Film continuity threshold has been determined at 4.5 ± 0.2 nm using in situ surface differential reflectance (SDR) technique. Prior to film continuity, deposition of a continuous interfacial layer is suggested by both in situ and real-time SDR and wafer-curvature techniques. After continuity, WxTi1-x films (9.5 nm thick WTi films) have a body-centered structure with a {110} fiber texture. Composition (x) and microstructure can be tuned varying working pressure. A transition from compressive to tensile residual stresses was observed by ex situ XRD and wafer-curvature methods. Size dependent resistivity is obtained and slightly varies as a function of working pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cunningham, J. A., Fuller, C. R., Haywood, C. T., IEEE Trans. Rel. R-19 (4), 182 (1970).CrossRefGoogle Scholar
Furuya, A., Ohshita, Y., J. Appl. Phys. 84 (9), 4941 (1998).CrossRefGoogle Scholar
Babcock, S. E., Tu, K. N., J. Appl. Phys. 59 (5), 1599 (1986).CrossRefGoogle Scholar
Wang, S.-Q., Suthar, S., Hoeflich, C., Burrow, B. J., J. Appl. Phys. 73 (5), 2301 (1993).CrossRefGoogle Scholar
Thornton, J. A., Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
Le Priol, A., Le Bourhis, E., Renault, P.-O., Muller, P., Sik, H., J. Appl. Phys. (2013) (in press).Google Scholar
Le Priol, A., Simonot, L., Abadias, G., Renault, P.-O., Le Bourhis, E., Surf. Coat. Technol. (2013) (submitted).Google Scholar
Hauk, V., Structural and Residual Stress Analysis by Nondestructive Methods (Elsevier Science B.V., Amsterdam, 1997).Google Scholar
D’ Heurle, F. M., Metall. Mater. Trans. B 1, 725 (1970).CrossRefGoogle Scholar
Floro, J. A., Chason, E., Cammarata, R. C., Srolovitz, D. J., MRS Bull. 27, 19 (2002).CrossRefGoogle Scholar
Muller, K. H., J. Appl. Phys. 62 (5), 1796 (1987).CrossRefGoogle Scholar
Choi, D., Kim, C. S., Naveh, D., Chung, S., Warren, A. P., Nuhfer, N. T., Toney, M. F., Coffey, K. R., and Barmak, K., Phys. Rev. B 86, 045432 (2012).CrossRefGoogle Scholar
Fillon, A., Abadias, G., Michel, A., Jaouen, C., Villechaise, P., Phys. Rev. Lett. 104, 096101 (2010).CrossRefGoogle Scholar