Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T03:00:02.745Z Has data issue: false hasContentIssue false

Fracture Toughness of Silicate Glasses: Insights from Molecular Dynamics Simulations

Published online by Cambridge University Press:  04 February 2015

Yingtian Yu
Affiliation:
Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
Bu Wang
Affiliation:
Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
Young Jea Lee
Affiliation:
Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
Mathieu Bauchy
Affiliation:
Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
Get access

Abstract

Understanding, predicting and eventually improving the resistance to fracture of silicate materials is of primary importance to design new glasses that would be tougher, while retaining their transparency. However, the atomic mechanism of the fracture in amorphous silicate materials is still a topic of debate. In particular, there is some controversy about the existence of ductility at the nano-scale during the crack propagation. Here, we present simulations of the fracture of three archetypical silicate glasses using molecular dynamics. We show that the methodology that is used provide realistic values of fracture energy and toughness. In addition, the simulations clearly suggest that silicate glasses can show different degrees of ductility, depending on their composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shi, Y., Luo, J., Yuan, F., and Huang, L., Journal of Applied Physics 115, 043528 (2014).CrossRefGoogle Scholar
Mauro, J. C. and Zanotto, E. D., International Journal of Applied Glass Science 5, 313 (2014).CrossRefGoogle Scholar
Wondraczek, L., Mauro, J. C., Eckert, J., Kühn, U., Horbach, J., Deubener, J., and Rouxel, T., Advanced Materials 23, 4578 4 (2011).CrossRefGoogle Scholar
Mauro, J. C., Glass Science 1, 20 (2014).Google Scholar
Hofmann, D. C., Suh, J.-Y., Wiest, A., Duan, G., Lind, M.-L., Demetriou, M. D., and Johnson, W. L., Nature 451, 1085 (2008).CrossRefGoogle Scholar
Mirkhalaf, M., Dastjerdi, A. K., and Barthelat, F., Nature Communications 5 (2014).CrossRefGoogle Scholar
Narayanaswamy, O. S., Journal of the American Ceramic Society 61, 146 (1978).CrossRefGoogle Scholar
Lawn, B. R., Hockey, B. J., and Wiederhorn, S. M., Journal of Materials Science 15, 1207 (1980).CrossRefGoogle Scholar
Celarie, F., Prades, S., Bonamy, D., Ferrero, L., Bouchaud, E., Guillot, C., and Marliere, C., Physical Review Letters 90, 075504 (2003).CrossRefGoogle Scholar
Pezzotti, G. and Leto, A., Physical Review Letters 103, 175501 (2009).CrossRefGoogle Scholar
Guin, J.-P. and Wiederhorn, S. M., Physical Review Letters 92, 215502 (2004).CrossRefGoogle Scholar
Brochard, L., Hantal, G., Laubie, H., Ulm, F., and Pellenq, R., in Poromechanics V (American Society of Civil Engineers, 2013).Google Scholar
Grimley, D. I., Wright, A. C., and Sinclair, R. N., Journal of Non-Crystalline Solids 119, 49 (1990).CrossRefGoogle Scholar
Wright, A. C., Clare, A. G., Bachra, B., Sinclair, R. N., Hannon, A. C., and Vessal, B., Transactions of the American Crystallographic Association 27, 239 (1991).Google Scholar
Cormier, L., Neuville, D. R., and Calas, G., Journal of Non-Crystalline Solids 274, 110 (2000).CrossRefGoogle Scholar
Ganster, P., Benoit, M., Kob, W., and Delaye, J.-M., Journal of Chemical Physics 120, 10172 (2004).CrossRefGoogle Scholar
Vollmayr, K., Kob, W., and Binder, K., Physical Review B 54, 15808 (1996).CrossRefGoogle Scholar
Roder, A., Kob, W., and Binder, K., Journal of Chemical Physics 114, 7602 (2001).CrossRefGoogle Scholar
Yuan, F. and Huang, L., Scientific Reports 4 (2014).Google Scholar
Cormack, A. N., Du, J., and Zeitler, T. R., Physical Chemistry Chemical Physics 4, 3193 (2002).CrossRefGoogle Scholar
Du, J. and Cormack, A., Journal of Non-Crystalline Solids 349, 66 (2004).CrossRefGoogle Scholar
Bauchy, M. and Micoulaut, M., Physical Review B 83, 184118 (2011).CrossRefGoogle Scholar
Bauchy, M., Journal of Chemical Physics 137, 044510 (2012).CrossRefGoogle Scholar
Bauchy, M., Guillot, B., Micoulaut, M., and Sator, N., Chemical Geology 346, 47 (2013).CrossRefGoogle Scholar
Pedone, A., Malavasi, G., Cormack, A. N., Segre, U., and Menziani, M. C., Chemistry of Materials 19, 3144 (2007).CrossRefGoogle Scholar
Matsui, M., Physics and Chemistry of Minerals 23, 345 (1996).CrossRefGoogle Scholar
Bouhadja, M., Jakse, N., and Pasturel, A., Journal of Chemical Physics 138, 224510 (2013).CrossRefGoogle Scholar
Jakse, N., Bouhadja, M., Kozaily, J., Drewitt, J. W. E., Hennet, L., Neuville, D. R., Fischer, H. E., Cristiglio, V., and Pasturel, A., Applied Physics Letters 101, 201903 (2012).CrossRefGoogle Scholar
Bauchy, M., Journal of Chemical Physics 141, 024507 (2014).CrossRefGoogle Scholar
Plimpton, S., Journal Of Computational Physics 117, 1 (1995).CrossRefGoogle Scholar
Wright, A. C., Journal of Non-Crystalline Solids 106, 1 (1988).CrossRefGoogle Scholar
Du, J. and Corrales, L. R., Journal of Non-Crystalline Solids 352, 3255 (2006).CrossRefGoogle Scholar
Sears, V. F., Neutron News 3, 26 (1992).CrossRefGoogle Scholar
Yuan, X. and Cormack, A. N., Journal of Non-Crystalline Solids 283, 69 (2001).CrossRefGoogle Scholar
Horbach, J., Kob, W., and Binder, K., Chemical Geology 174, 87 (2001).CrossRefGoogle Scholar
Du, J. and Corrales, L. R., Physical Review B 72, 092201 (2005).CrossRefGoogle Scholar
Wright, A. C., Journal of Non-Crystalline Solids 159, 264 (1993).CrossRefGoogle Scholar
Griffith, A. A., Philosophical Transactions of the Royal Society of London. Series A 221, 163 (1921).CrossRefGoogle Scholar
Leblond, J.-B., Mécanique De La Rupture Fragile Et Ductile (Paris, 2003).Google Scholar
Anderson, T. L., Fracture Mechanics: Fundamentals and Applications .Google Scholar
Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Oxford science publications .Google Scholar
Nosé, S., Molecular Physics 52, 255 (1984).CrossRefGoogle Scholar
Hoover, W. G., Physical Review A 31, 1695 (1985).CrossRefGoogle Scholar
Irwin, G. R., Fracture in Handbuch der Physik, vol. V (1958).CrossRefGoogle Scholar
Sih, G. C., Paris, P., and Irwin, G., International Journal of Fracture Mechanics 1, 189 (1965).CrossRefGoogle Scholar
Dugdale, D., Journal of the Mechanics and Physics of Solids 8, 100 (1960).CrossRefGoogle Scholar
Barenblatt, G., Advances in Applied Mechanics 7, 104 (1962).Google Scholar
Lemm, J. M., Advances in Applied Mechanics 7, 340 (1962).Google Scholar
Wiederhorn, S. M., Journal of the American Ceramic Society 52, 99 (1969).CrossRefGoogle Scholar
Kennedy, C., Rindone, G., and Bradt, R., American Ceramic Society Bulletin 52, 389 (1973).Google Scholar
Eagan, R. J. and Swearekgen, J. C., Journal of the American Ceramic Society 61, 27 (1978).CrossRefGoogle Scholar