Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T12:43:41.542Z Has data issue: false hasContentIssue false

Fractal-based image texture analysis of trabecular bone architecture for assessment of bone health: bone aging in Mexican men

Published online by Cambridge University Press:  19 March 2012

M. Navarrete
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad Nº 3000, Universidad Nacional Autónoma de México, C. U., 04510, D. F., México.
E. Cedillo
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad Nº 3000, Universidad Nacional Autónoma de México, C. U., 04510, D. F., México.
L. Solís
Affiliation:
Instituto Nacional de Rehabilitación; Calzada México Xochimilco No. 289, CP 14389, DF. México.
CH Villegas
Affiliation:
Instituto Nacional de Rehabilitación; Calzada México Xochimilco No. 289, CP 14389, DF. México.
JA Alvarado
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad Nº 3000, Universidad Nacional Autónoma de México, C. U., 04510, D. F., México.
FA Godínez
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad Nº 3000, Universidad Nacional Autónoma de México, C. U., 04510, D. F., México.
Get access

Abstract

Two methods based on fractal image analysis were used to extract the architectural features of the anisotropic structure of trabecular bone from scanning electron microscope (SEM) images of sliced bone samples in order to assess the bone’s medical condition. Two methods applied were Box-Counting (BC) and Fast Fourier Transform (FFT). Tests with synthetic images of known fractal dimension aided in the interpretation of the fractal dimension (FD) profiles. Samples from L3 vertebrae were removed from Mexican male donors at the time of necropsy and evaluated using computed axial tomography (CAT) scans. Three sliced samples in normal, osteopenic and osteoporotic conditions were identified in order to compare both methods across a range of samples. The three-dimensional projection of the FD profile reflected a multifractal behavior of the trabecular architecture and clearly showed the differences in texture between the three conditions studied: normal, osteopenic and osteoporotic. In addition, the results suggest that the FFT method provides an accurate and consistent estimated for characterizing trabecular bone than the BC method.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lopes, R., Betrouni, N., Image Analysis 13 634 (2009).Google Scholar
2. Cortet, B., Colin, D., Dubois, P., Delecambre, B., Marchandise, X., Rev. Rhum. 62:84(1995).Google Scholar
3. Legrand, E., Chappard, D., Basle, M.F., Audran, M.. Rev Rhum 66, 619 (1999).Google Scholar
4. Durand, E.P., Ruegsegger, P.J. Compt. Assist. Tomogr. 115, 133 1991.Google Scholar
5. Lespessailles, E., Chappard, C., Bonnet, N., Benhamou, C.L., Joint Bone Spine 73, 254 (2006).Google Scholar
6. Benhamou, C.L., Lespessailles, E., Jacquet, G., Rev. Rhum. 61, 297 (1994).Google Scholar
7. Benhamou, C.L., Lespessailles, E., Jacquet, G., Harba, R., Jennane, R., et al. . J. Bone Miner. Res. 9, 1909 (1994).Google Scholar
8. Whitehouse, W.J.. J. Microsc, 1 (1), 153 (1974).Google Scholar
9. Odgaard, A.. Bone 20, 315 (1997).Google Scholar
10. Odgaard, A., Jensen, E.B., Gundersen, H.L.. J. Microsc., 157, 149 (1990).Google Scholar
11. Wigderowitz, C.A., Abel, E.W., Rowley, D.I.. Clin. Orthop. Relat. Res., 335, 152 (1997).Google Scholar
12. Paraffit, A.M., Matthews, C.H.E., and et al. . J. Clin. Invest. 72, 1396 (1983).Google Scholar
13. Peitgen, H.O., Jurgens, H., Saupe, D., Chaos and Fractals New Frontiers of Science, Springer, New York, 1992.Google Scholar
14. Foroutan-pour, K., Dutilleul, P., Smith, D. L., Appl. Math. Compt. 105, 195 (1999).Google Scholar
15. De Souza, J., Pires Rostirolla, S., Computers & Geosciences 37, 241(2011).Google Scholar
16. Mandelbrot, B. B., The Fractal Geometry of Nature, Freman, New Yor, (1983).Google Scholar
17. Navarrete, M., Pineda, J., Vera-Graciano, R.. J. Applied Polymer Science, 111, 1199 (2009).Google Scholar