Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:20:13.205Z Has data issue: false hasContentIssue false

Formation, Optical Properties and Applications of Edge Gold-Coated Silver Nanoprisms

Published online by Cambridge University Press:  09 June 2015

Mohammad M. Shahjamali
Affiliation:
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Michael Salvador
Affiliation:
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA. Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
Negin Zaraee
Affiliation:
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Get access

Abstract

A facile, high-yield synthesis of edge gold-coated silver nanoprisms (GSNPs) with a gold nanoframe as thin as 1.7 nm and their comprehensive characterizations by using various spectroscopic and microscopic techniques is introduced. The GSNPs exhibit remarkably higher stability than silver nanoprisms (SNPs) and are therefore explored as effective optical antennae for light-harvesting applications. When embedded into a bulk heterojunctions film of P3HT:PCBM, plasmonic GSNPs with a localized surface plasmon resonance (LSPR) around 500 nm can effectively act as optical antennae to enhance light harvesting in the active layer. As a result, we measured up to 7-fold enhancement in the polaron generation yield through photoinduced absorption spectroscopy. Owing to the high stability and strong field enhancement, the presented GSNPs feature great potential as plasmonic probes for photovoltaic applications and LSPR sensing.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Willets, K. A. and Van Duyne, R. P., Annu. Rev. Phys. Chem. 58 (1), 267297 (2007).CrossRefGoogle Scholar
Erathodiyil, N. and Ying, J. Y., Acc. Chem. Res. 44 (10), 925935 (2011).CrossRefGoogle Scholar
Fang, J., Cao, S.-W., Wang, Z., Shahjamali, M. M., Loo, S. C. J., Barber, J. and Xue, C., Int. J. Hydrogen Energy 37 (23), 1785317861 (2012).CrossRefGoogle Scholar
Cao, S.-W., Fang, J., Shahjamali, M. M., Wang, Z., Yin, Z., Yang, Y., Boey, F. Y. C., Barber, J., Loo, S. C. J. and Xue, C., CrystEngComm 14 (21), 72297235 (2012).CrossRefGoogle Scholar
Cao, S.-W., Fang, J., Shahjamali, M. M., Boey, F. Y. C., Barber, J., Loo, S. C. J. and Xue, C., RSC. Adv. 2 (13), 55135515 (2012).CrossRefGoogle Scholar
Szunerits, S. and Boukherroub, R., Chemcomm 48 (72), 89999010 (2012).Google Scholar
Martinsson, E., Shahjamali, M. M., Enander, K., Boey, F., Xue, C., Aili, D. and Liedberg, B., J. Phys. Chem. C 117 (44), 2314823154 (2013).CrossRefGoogle Scholar
Sherry, L. J., Jin, R., Mirkin, C. A., Schatz, G. C. and Van Duyne, R. P., Nano Lett. 6 (9), 20602065 (2006).CrossRefGoogle Scholar
Martinsson, E., Otte, M. A., Shahjamali, M. M., Sepulveda, B. and Aili, D., J. Phys. Chem. C 118 (42), 2468024687 (2014).CrossRefGoogle Scholar
Sherry, L. J., Chang, S.-H., Schatz, G. C., Van Duyne, R. P., Wiley, B. J. and Xia, Y., Nano Lett. 5 (10), 20342038 (2005).CrossRefGoogle Scholar
Xue, C., Chen, X., Hurst, S. J. and Mirkin, C. A., Adv. Mater. 19 (22), 4071-+ (2007).CrossRefGoogle Scholar
Molotsky, T., Tamarin, T., Moshe, A. B., Markovich, G. and Kotlyar, A. B., J. Phys. Chem. C 114, 15951 (2010).CrossRefGoogle Scholar
Shemer, G., Krichevski, O., Markovich, G., Molotsky, T., Lubitz, I. and Kotlyar, A. B., J. Am. Chem. Soc. 128, 11006 (2006).CrossRefGoogle Scholar
Lu, L., Luo, Z., Xu, T. and Yu, L., Nano Lett. 13 (1), 5964 (2012).CrossRefGoogle Scholar
Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S. and Brongersma, M. L., Nat. Mater. 9 (3), 193204 (2010).CrossRefGoogle Scholar
Poorkazem, K., Hesketh, A. V. and Kelly, T. L., J. Phys. Chem. C 118 (12), 63986404 (2014).CrossRefGoogle Scholar
Kulkarni, A. P., Noone, K. M., Munechika, K., Guyer, S. R. and Ginger, D. S., Nano Lett. 10 (4), 15011505 (2010).CrossRefGoogle Scholar
Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H. and Chong, C. T., Nat. Mater. 9, 707 (2010).CrossRefGoogle Scholar
Shahjamali, M. M., Bosman, M., Cao, S., Huang, X., Saadat, S., Martinsson, E., Aili, D., Tay, Y. Y., Liedberg, B., Loo, S. C. J., Zhang, H., Boey, F. and Xue, C., Adv. Funct. Mater. 22 (4), 849854 (2012).CrossRefGoogle Scholar
Shahjamali, M. M., Lim Ming, P., Kathawala, M. H., Pratheepan, S., Saini, N. B., Mansor, M. B. and Can, X., Photonics Global Conference (PGC), 13 (2010).Google Scholar
Shahjamali, M. M., Bosman, M., Cao, S., Huang, X., Cao, X., Zhang, H., Pramana, S. S. and Xue, C., Small 9 (17), 28802886 (2013).CrossRefGoogle Scholar
Xue, C., Li, Z. and Mirkin, C. A., Small 1 (5), 513516 (2005).CrossRefGoogle Scholar
Aherne, D., Ledwith, D. M., Gara, M. and Kelly, J. M., Adv. Funct. Mater. 18 (14), 20052016 (2008).CrossRefGoogle Scholar
Shahjamali, M. M., Martinsson, E., Marcello, W., Yin, L., Liedberg, B., Boey, F. and Xue, C., Third Asia Pacific Optical Sensors Conference, Proc. SPIE 8351, 83511S83511S (2012).CrossRefGoogle Scholar
Metraux, G. S., Cao, Y. C., Jin, R. C. and Mirkin, C. A., Nano Lett. 3 (4), 519522 (2003).CrossRefGoogle Scholar
Shahjamali, M. M., Salvador, M., Bosman, M., Ginger, D. S. and Xue, C., J. Phys. Chem. C 118 (23), 1245912468 (2014).CrossRefGoogle Scholar
Chen, J., Wiley, B., Li, Z. Y., Campbell, D., Saeki, F., Cang, H., Au, L., Lee, J., Li, X. and Xia, Y., Adv. Mater. 17 (18), 22552261 (2005).CrossRefGoogle Scholar
Salvador, M., MacLeod, B. A., Hess, A., Kulkarni, A. P., Munechika, K., Chen, J. I. L. and Ginger, D. S., ACS Nano 6 (11), 1002410032 (2012).CrossRefGoogle Scholar