Published online by Cambridge University Press: 15 April 2013
The interface between a matrix and its reinforcement is critical to the final composite properties. There are different ways to enhance bonding between the reinforcing fiber and the matrix, based mainly on surface plasma treatments which usually decrease the fiber tensile strength. In this research, atomic layer deposition (ALD) was tested as a possible way to enhance the chemical bonding between the fiber and matrix in the hope that it would not effect the fiber tensile strength. Microbond tests were carried out to measure the effect of an ALD aluminum oxide (Al2O3) coating on the fiber/matrix interfacial shear strength, and the fiber tensile strength was measured in order to assess whether this treatment harms the fiber strength. The ultrahigh molecular weight polyethylene (UHMWPE) fibers that were coated by ALD with aluminum oxide (Al2O3) showed a significant increase in the interfacial shear strength without reducing the fibers’ ultimate tensile strength.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.