Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T13:07:16.173Z Has data issue: false hasContentIssue false

Experimental Characterization of frequency-depend electrical parameters of On-Chip Interconnects

Published online by Cambridge University Press:  19 November 2013

Diego M. Cortés Hernández
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) Luis Enrique Erro No. 1, Sta. María Tonanzintla, Puebla, C.P. 72000, Méxicodmcortes@inaoep.mx, mlinares@inaoep.mx, reydezel@inaoep.mx
Mónico Linares Aranda
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) Luis Enrique Erro No. 1, Sta. María Tonanzintla, Puebla, C.P. 72000, Méxicodmcortes@inaoep.mx, mlinares@inaoep.mx, reydezel@inaoep.mx
Reydezel Torres Torres
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) Luis Enrique Erro No. 1, Sta. María Tonanzintla, Puebla, C.P. 72000, Méxicodmcortes@inaoep.mx, mlinares@inaoep.mx, reydezel@inaoep.mx
Get access

Abstract

An exhaustive analysis of the frequency-dependent series resistance associated with the on-chip interconnects is presented. This analysis allows the identification of the regions where the resistance curves present different trending due to variations in the current distribution. Furthermore, it is explained the apparent discrepancy of experimental curves with the well-known square-root-of-frequency models for the resistance considering the skin-effect. Measurement results up to 40 GHz show that models involving terms proportional to the square root of frequency are valid provided that the section of the interconnect where the current is flowing is appropriately represented.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Quémerais, T., Moquillon, L., Fournier, J. M., and Benech, P.. IEEE Trans. on Microwave Theory and Techniques, 58, 2426 (2010).CrossRefGoogle Scholar
Sakurai, T., IEEE J. Solid-State Circuits, SC-18, 418 (1983).CrossRefGoogle Scholar
Ismail, Y. I. Friedman, E. G., and Neves, J. L., IEEE Trans. on VLSI Systems, 7, 4 (1999).CrossRefGoogle Scholar
Kim, J. H., Oh, D., and Kim, W., IEEE Trans. Adv. Packag., 33, 4, 857 (2010).CrossRefGoogle Scholar
Brinkhoff, J. K.et. al., IEEE Trans. Microwave Theory Tech., 56, 12, 2954 (2008).CrossRefGoogle Scholar
Makita, T. Tamai, I., and Seki, S., IEEE Trans. on Electron Devices, 58, 3 (2011).CrossRefGoogle Scholar
Heng-Ming, H. Tai-Hsin, L., and Chan-Jung, H., IEEE J. on Emerging and Selected Topics in Circuits and Systems, 2, 2 (2012).Google Scholar
Zeng, D., H. et.al., Custom Integrated Circuits Conference, 1-4 (2010).Google Scholar
Zhang, J., et al. ., IEEE Trans. Electromagn. Compat., 52, 1, 189 (2010).CrossRefGoogle Scholar
Cho, H. Y., Huang, J. K., Kuo, C. K., Liu, S., and Wu, C. Y., IEEE Trans. Electron Devices, 56, 12, 3160 (2009).CrossRefGoogle Scholar
Gonzalez, O., et al. . Analog ICs and Signal Processing, 71, 221 (2012).Google Scholar
Young, B.. 1st ed. New Jersey, Prentice Hall PTR, 2001.Google Scholar
Johnson, H. and Graham, M., “High-Speed Signal Propagation: Advanced Black Magic,” New Jersey, Prentice Hall PTR, 2003.Google Scholar