Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-10T09:47:28.650Z Has data issue: false hasContentIssue false

Excimer Laser Induced Damage in Stressed Polyimide Films Exposed in Air

Published online by Cambridge University Press:  26 February 2011

K. Tonyali
Affiliation:
Department of PhysicsWashington State UniversityPullman, WA 99164-2814
L. C. Jensen
Affiliation:
Department of PhysicsWashington State UniversityPullman, WA 99164-2814
J. T. Dickinson
Affiliation:
Department of PhysicsWashington State UniversityPullman, WA 99164-2814
Get access

Abstract

In earlier work we reported the consequences of simultaneous exposure of polymers to mechanical stress and electron bombardment. In this study we examine the response of highly stressed polyimide films to excimer laser radiation (20 ns pulses @ 248 nm wavelength) in air. The exposed surfaces show evidence of surface and near surface damage, crack initiation, and eventually crack growth over a wide range of applied stress and laser fluence. These results show that the morphology of the stressed material has a significant influence on the resulting damage and suggest that the regions of highest damage are those experiencing the highest local stress. A growth of nodules on the polyimide surface are also observed which are missing when exposed in vacuum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Garton, A., Stevenson, W. T. K., and McLean, P. D., Materials and Design 7, 319 (1986).CrossRefGoogle Scholar
2. Dickinson, J. T., Klakken, M. L., Miles, M. H., and Jensen, L. C., J. Polym. Sci. Polym. Phys. Ed. 23, 2273 (1985).CrossRefGoogle Scholar
3. Dickinson, J. T., Jensen, L. C., and Klakken, M. L., J. V. Sci. Tech. A 4, 1501 (1986).Google Scholar
4. Michael, R., Frank, S., Stulik, D., and Dickinson, J. T., in Proc. of 13th Int. Symp. on Effects of Radiation on Materials, ASTM E-10, Seattle, WA, 1986.Google Scholar
5. Dickinson, J. T., Klakken, M. L., and Jensen, L. C., in Proceedings of the 18th SAMPE International Technical Conference (SAMPE, Corvina, CA, 1986), p. 983Google Scholar
6. Dickinson, J. T., Tonyali, K., Klakken, M. L., and Jensen, L. C., J. Vac. Scd. Technol. A 5, 1076 (1987).CrossRefGoogle Scholar
7. Dickinson, J. T., Proc. of the ACS Div. of Poly. Mat.: Sci. and Eng. 56, 282 (1987).Google Scholar
8. Sirinivasan, R., J. Vac. Scd. Technol. B 1, 923 (1983).CrossRefGoogle Scholar
9. Sirinivasan, R. and Braren, B., J. Polym. Scd. Polym. Chem. Ed. 22, 2601 (1984).CrossRefGoogle Scholar
10. Sirinivasan, R., Braren, B., Dreyfus, R. W., Fadel, L., and Seeger, D. E., J. Opt. Soc. B 3, 785 (1986).CrossRefGoogle Scholar
11. Garrison, B. J. and Sirinivasan, R., Appl. Phys. Lett. 44, 9 (1984).CrossRefGoogle Scholar
12. Sutcliffe, E. and Sirinivasan, R., J. Appl. Phys. 60, 3315 (1986).CrossRefGoogle Scholar
13. Sirinivasan, R., Science 234, 560 (1986).Google Scholar
14. Sirinivasan, R., Braren, B., and Dreyfus, R. W., J. Appl. Phys. 61, 372 (1987).CrossRefGoogle Scholar
15. Yeh, J. T. C., J. Vac. Sci. Technol. A 4, 653 (1986).CrossRefGoogle Scholar
16. Brannon, J. H., Lankard, J. R., Baise, A. I., Burns, F., and Kaufman, J., J. Appl. Phys. 58, 2036 (1985).CrossRefGoogle Scholar
17. Dickinson, J. T., Tonyali, K., and Jensen, L. C., submitted to J. Vac. Sci. Technol.Google Scholar
18. Isoda, S., Shimada, H., Kochi, M., and Kambe, H., J. Polym. Scd. Polym. Phys. Ed. 19, 1293 (1981).CrossRefGoogle Scholar