Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:12:03.984Z Has data issue: false hasContentIssue false

Evolution of Stacking Faults Defects During Epitaxial Growths: Role of Surface Kinetics

Published online by Cambridge University Press:  01 February 2011

Massimo Camarda
Affiliation:
massimo.camarda@imm.cnr.it
Antonino La Magna
Affiliation:
antonino.lamagna@imm.cnr.it, United States
Andrea Canino
Affiliation:
andrea.canino.ct@gmail.com, CNR-IMM, IMM, Z.I. VIII Strada 5 I, Catania, 95121, Italy
Francesco La Via
Affiliation:
francesco.lavia@imm.cnr.it, CNR-IMM, IMM, Z.I. VIII Strada 5 I, Catania, 95121, Italy
Get access

Abstract

Three dimensional kinetic Monte Carlo simulations on super-lattices are applied to study the evolution of stacking faults during epitaxial growths. We show that, in the case of misoriented close packed substrates, these defects can either extend throughout the entire epilayer (i.e. extended from the substrate up to the surface) or close in dislocation loops, in dependence of the deposition conditions. We explain this behavior in terms of a surface kinetic competition between these defects and the surrounding crystal: if the local growth rate of the defect is larger compared with that of the perfect crystal the defect will expands, otherwise it will closes. This mechanisms allows to explain several experimental results on homo and hetero epitaxies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kimoto, T. and Matsunami, H., J. Appl. Phys. 75, 850 (1994).Google Scholar
2 Choyke, W., Matsunami, H., and Pens, G., Silicon Carbide: Recent Major Advances (Springer, Berlin, 2005).Google Scholar
3 Via, F. L., Izzo, G., Mauceri, M., Pistone, G., Condorelli, G., Perdicaro, L., Abbondanza, G., Calcagno, L., Foti, G., and Crippa, D., J. Crystal growth 311, 107 (2008).Google Scholar
4 Burton, W., Cabrera, N., and Frank, F., Phil. Trans. Roy. Soc. London Ser. A 243, 299 (1951).Google Scholar
5 Camarda, M., Magna, A. La, and Via, F. La, J. Comp. Phys. 227, 1057 (2007).Google Scholar
6 Camarda, M., Magna, A. La, Fiorenza, P., Giannazzo, F., and Via, F. La, J. Crystal growth 310, 971 (2008).Google Scholar
7 Camarda, M., Magna, A. La, Fiorenza, P., Izzo, G., and Via, F. La, Materials Science Forum 600–603, 135 (2009).Google Scholar
8 Kundin, J. and Emmerich, H., Eur. Phys. J. 63, 25 (2008).Google Scholar
9 Newman, G., Barkema, M.E.J., Monte Carlo Methods in Statistical Physics (Clarendon Press, 1999).Google Scholar
10 Camarda, M., Magna, A. La, and Via, F. La, Materials Science Forum 615, 73 (2009).Google Scholar
11 Choyke, W., Matsunami, H., and Pens, G., Silicon Carbide: Recent Major Advances (Springer, 2004).Google Scholar
12 Camarda, M., Delugas, P., Canino, A., Severino, A., , P. N., Magna, A. La, and Via, F. La, Materials Science Forum (2009), in press.Google Scholar
13 Camarda, M., Magna, A. La, and Via, F. La, Surface Science 603, 2226 (2009).Google Scholar
14 Camarda, M., Magna, A. La, and Via, F. La, Thin Solid Films 518, S159 (2010).Google Scholar
15 Hori, T., Danno, K., and Kimoto, T., J. Crystal growth 306, 297 (2007).Google Scholar
16 Myers-Ward, R., VanMil, B., Stahlbush, R., Katz, S., and McCrate, J., Materials Science Forum 615, 61 (2009).Google Scholar
17 Borovikov, V. and Zangwill, A., Physical Review B 79, 245413 (2009)Google Scholar
18 Yagi, K., Kawahara, T., Hatta, N., and Nagasawa, H., Materials Science Forum 527–529, 291 (2006).Google Scholar