Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:36:23.405Z Has data issue: false hasContentIssue false

Evaluation of the Stiffness of Carbon Nanotube Probe by Force Curve Measurements

Published online by Cambridge University Press:  01 February 2011

Motoyuki Hirooka
Affiliation:
motoyuki.hirooka.bm@hitachi.com, Hitachi, Ltd., Materials Research Laboratory, 1-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken, 319-1292, Japan
Makoto Okai
Affiliation:
makoto.okai.ev@hitachi.com, Hitachi, Ltd., Materials Research Laboratory, 1-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken, 319-1292, Japan
Hiroki Tanaka
Affiliation:
htanaka@kyowa.hitachi.co.jp, Hitachi Kyowa Engineering Co., Ltd., 832-2, Horiguchi, Hitachinaka-shi, Ibaraki-ken, 312-8507, Japan
Satoshi Sekino
Affiliation:
s.sekino.zk@hitachi-kenki.com, Hitachi Kenki FineTech Co., Ltd., 650, Kandatsu-machi, Tsuchiura-shi, Ibaraki-ken, 300-0013, Japan
Get access

Abstract

Buckling of arc discharge made multi-walled carbon nanotubes with various lengths was studied by alternating the length of a multi-walled nanotube by intermittent cutting. Buckling stresses were determined by measuring force-distance curves employing an atomic force microscope and the values were compared with those expected from the Euler's theoretical model. As the length of a nanotube was shortened, its buckling mode changed from elastic compressive bending with Young's modulus of 1.2TPa, to inelastic compressive fracture. The inelastic behavior observed for short nanotubes can be attributed to the buckling mechanism, in which ripple-like distortions develop along the nanotube sidewalls.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morimoto, T., Kuroda, H., Minomoto, Y., Nagano, Y., Kenbo, Y. and Hosaka, S., Jpn. J. Appl. Phys. 41, pp. 42384241 (2002).Google Scholar
2. Dahlen, G., Osborn, M., Okulan, N., Foreman, W., Chand, A. and Foucher, J., J. Vac. Sci. Technol. B 23(3), 2297 (2005).Google Scholar
3. Fujita, D., Itoh, H., Ichimura, S. and Kurosawa, T., Nanotechnology 18, 080442 (2007).Google Scholar
4. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E., Nature 384, 147 (1996).Google Scholar
5. Strus, M. C., Raman, A., Han, C-S. and Nguyen, C. V., Nanotechnology 16, 2482 (2005).Google Scholar
6. Wong, E. W., Sheehan, P.L. E. and Lieber, C. M., Science 77, 1971 (1997).Google Scholar
7. Poncharal, P., Wang, Z. L., Ugarte, D. and Heer, W. A. de, Science 283, 1513 (1999).Google Scholar
8. Lourie, O., Cox, D. M. and Wagner, H. D., Phys. Rev. Lett. 81, 1638 (1998).Google Scholar
9. Bower, C., Rosen, R. and Jin, L., Appl. Phys. Lett. 74, 3317 (1999).Google Scholar
10. Pantano, A., Boyce, M. C. and Prks, D. M., J. Eng. Mater. Technol 126, 279 (2007).Google Scholar
11. Fujieda, T., Hidaka, K., Hayashibara, M., Kamino, T., Matsumoto, H., Ose, Y., Abe, H., Shimizu, T., and Tokumoto, H., Appl. Phys. Lett. 85, 5739 (2004).Google Scholar
12. Akita, S., Nishijima, H., Kishida, T. and Nakayama, Y., Jpn. J. Appl. Phys. 39, pp.37243727 (2000).Google Scholar
13. Ashiri, K., Cohen, S. R., Gartsman, K., Rosentsveig, R., Seifert, G. and Tenne, R., J. Mater. Res. 19 (2), 454 (2004).Google Scholar
14. Johnston, B. G., Guide to Design Criteria for Metal Compression Members, 2nd ed. (Wiley, New York, 1966), 217 Google Scholar
15. Wang, Q., Duan, W. H., Liew, K. M. and He, Q., Appl. Phys. Lett. 90, 033110 (2007).Google Scholar