No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
Adhesive strength between V-4Cr-4Ti type alloys and an yttrium oxide layer formed by a plasma spray technique was evaluated by a laser shock spallation method, which uses a pulse laser to generate a shock wave to create tensile stress inside the specimen. There was no significant dependence of the adhesive strength on the alloying elements examined, such as yttrium, silicon and aluminum. Detailed observation of the exfoliation behavior was carried out to identify the weakest interface of the coating layer. Several modes of exfoliation behavior were categorized after cross-sectional observation. There was some uncertainty of the adhesive strength of the layer evaluated by the laser shock method, due to the thickness of the coating layer. The typical adhesive strength between the alloy and yttrium oxide layer was evaluated to be approximately 400 MPa.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.