Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:20:19.219Z Has data issue: false hasContentIssue false

Enhancement of the gas sensing performance of carbon nanotube networked films based on their electrophoretic functionalization with gold nanoparticles

Published online by Cambridge University Press:  02 September 2015

E. Dilonardo*
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy. Department of Electrotechnics and Electronics (DEE), Politecnico di Bari, Bari, Italy.
M. Penza*
Affiliation:
ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Technical Unit for Materials Technologies - Brindisi Research Center, Brindisi, Italy
M. Alvisi
Affiliation:
ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Technical Unit for Materials Technologies - Brindisi Research Center, Brindisi, Italy
C. Di Franco
Affiliation:
CNR-IFN Bari, Bari, Italy
D. Suriano
Affiliation:
ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Technical Unit for Materials Technologies - Brindisi Research Center, Brindisi, Italy
R. Rossi
Affiliation:
ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Technical Unit for Materials Technologies - Brindisi Research Center, Brindisi, Italy
F. Palmisano
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy.
L. Torsi
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy.
N. Cioffi*
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy.
*
*Corresponding authors: Elena Dilonardo (elena.dilonardo@uniba.it), Michele Penza (michele.penza@enea.it), Nicola Cioffi (nicola.cioffi@uniba.it).
*Corresponding authors: Elena Dilonardo (elena.dilonardo@uniba.it), Michele Penza (michele.penza@enea.it), Nicola Cioffi (nicola.cioffi@uniba.it).
*Corresponding authors: Elena Dilonardo (elena.dilonardo@uniba.it), Michele Penza (michele.penza@enea.it), Nicola Cioffi (nicola.cioffi@uniba.it).
Get access

Abstract

Controlled amounts of colloidal Au nanoparticles (NPs), electrochemically pre-synthesized, were directly deposited on MWCNTs sensor devices by electrophoresis. Pristine and Au-functionalized MWCNT networked films were tested as active layers in resistive gas sensors for detection of pollutant gases. Au-modified CNT-chemiresistor demonstrated higher sensitivity to NO2 detecting up to sub-ppm level compared to pristine one. The investigation of the cross-sensitivity towards other pollutant gases revealed the decrease of the sensitivity to NO2 with the increase of Au content, and, on the other side, the increase of that to H2S; therefore the fine tune of the metal loading on CNTs has allowed to control not only the gas sensitivity but also the selectivity towards a specific gaseous analyte. Finally, the sensing properties of Au-decorated CNT sensor seem to be promising in environmental and automotive gas sensing applications, based on low power consumption and moderate operating temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Penza, M., Martin, P.J., and Yeow, J.T.W. in Gas Sensing Fundamentals, edited by Kohl, C.-D., and Wagner, T., , T. (Springer Series on Chemical Sensors and Biosensors, 2014) pp. 109114.Google Scholar
Mao, S., Lu, G., and Chen, J., J. Mater. Chem. A 2, 5573 (2014).CrossRefGoogle Scholar
Fan, Y., Goldsmith, B.R., and Collins, P.J., Nature Mater. 4, 906 (2005).CrossRefGoogle Scholar
Syntheses and Applications of Carbon Nanotubes and Their Composites, edited by Suzuki, S. (InTech 2013) ISBN 978-953-51-1125-2.CrossRefGoogle Scholar
Kauffman, D.R., Sorescu, D.C., Schofield, D.P., Allen, B.L., Jordan, K.D., and Star, A., Nano Lett. 10, 958 (2010).CrossRefGoogle Scholar
Penza, M., Rossi, R., Alvisi, M., Cassano, G., Signore, M.A., Serra, E., and Giorgi, R., J. Sens., 107057 (2008).Google Scholar
Penza, M., Cassano, G., Rossi, R., Alvisi, M., Rizzo, A., Signore, M.A., Dikonimos, Th., Serra, E., , E., and Giorgi, R., Appl. Phys. Lett. 90, 173123 (2007).CrossRefGoogle Scholar
Abdelhalim, A., Abdellah, A., Scarpa, G. ,and Lugli, P., Nanotechnology 25, 055208 (2014).CrossRefGoogle Scholar
Ieva, E., Buchholt, K., Colaianni, L., Cioffi, N., Sabbatini, L., Capitani, G.C., Lloyd Spetz, A., Kall, P.O., and Torsi, L., , L, Sens. Lett. 6, 1 (2008).CrossRefGoogle Scholar
Penza, M., Rossi, R., Alvisi, M., Cassano, G., and Serra, E., Sens. Act. B 140, 176 (2009).CrossRefGoogle Scholar
Mudimela, R.P., Scardamaglia, M., González-León, O., Reckinger, N., Snyders, R., Llobet, E., Bittencourt, C., Colomer, J.F., Beilstein J. Nanotechnol. 5, 910 (2014).CrossRefGoogle Scholar
Radnik, J., Mohr, C., and Claus, P., Phys. Chem. Chem. Phys. 5, 172 (2003).CrossRefGoogle Scholar