Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T03:49:21.561Z Has data issue: false hasContentIssue false

Enhancement of On-chip Bioassay Efficiency With Electrothermal Effect

Published online by Cambridge University Press:  01 February 2011

K. R. Huang
Affiliation:
sdchao@ntu.edu.tw, NTU, Taipei, Taiwan, Province of China
J. S. Chang
Affiliation:
jschang@iam.ntu.edu.tw, NTU, Taipei, Taiwan, Province of China
Sheng Der Chao
Affiliation:
sdchao@spring.iam.ntu.edu.tw, Institute of Applied Mechanics, Taipei, Taiwan, Province of China
K. C. Wu
Affiliation:
wukc@iam.ntu.edu.tw, NTU, Taipei, Taiwan, Province of China
Get access

Abstract

We have performed the finite element simulations to study the binding reaction kinetics of the analyte-ligand protein pairs, C-reactive protein (CRP) and anti-CRP, in a reaction chamber of a biosensor. For diffusion limited reactions, diffusion boundary layers often develop on the reaction surface, thus hindering the reaction. To enhance the efficiency of a biosensor, a non-uniform AC electric field is applied to induce the electrothermal force which stirs the flow field. Biosensors with different arrangements of the electrode pairs and the reaction surface are designed to study the effects of geometric configurations on the binding efficiency. The maximum initial slope of the binding curve can be 6.94 times of the field-free value in the association phase, under an AC field of 15 rms and an operating frequency of 100 kHz. With the electrothermal effect, it is possible to use a slower flow and save much sample consumption without sacrificing the performance of a biosensor. Several design factors not studied in our previous works such as the thermal boundary conditions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yallow, R. S., and erson, S. Berson, Nature, 184 (1959) 1648.Google Scholar
2 Auroux, P. A., Iossifidis, D., Reye, D. R., and Manz, A., Anal. Chem., 74 (2002) 2637.Google Scholar
3 Tillet, W. S., and Francis, T., J. Exp. Med., 52 (1930) 561.Google Scholar
4 Deen, W. M., Analysis of Transport Phenomena Phenomena, Oxford University Press, New York, 1998.Google Scholar
5 Hibbert, D. B., and Gooding, J. J., Langmuir, 18 (2002) 1770.Google Scholar
6 Yang, C. K., Chang, J. S., Chao, S. D., and Wu, K. C. J. App. Phys, 103 (2008) 084702.Google Scholar
7 Sigurdson, M., Wang, D., and Meinhart, C. D.,Lab on a chip, 5 (2005), 1366.Google Scholar
8 Ramos, H. Morgan, and Castellanos, A., J.Phys.D:Appl.Phys. 31 (1998) 2338.Google Scholar
9 Pethig, R., Crit. Revs. Biotechnol., 16 (1996) 331.Google Scholar
10 Ramos, A. Gonzalez, Green, N., Castellanos, A., and Morgan, H. Mor, Phys Rev., 61-4 (2000) 4019.Google Scholar
11 Green, N., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A., Phys Rev. 61-4 (2000), 4011.Google Scholar
12 Meinhart, C., Wang, D., and Turner, K., Biomedical Microdevices, 5-2 (2003) 139.Google Scholar
13 Wang, X. B., Huang, Y., Gascoyne, P. R. C.and Becker, F. F. IEEE Trans. Ind. Appl., 33 (1997) 660.Google Scholar
14 Morgan, H., Hughes, M. P., and Green, N. G., . Biophysical J., 77 (1999) 516.Google Scholar
15 Washizu, M., and Suzuki, S. IEEE Transaction on Industry Application Application, 30 (1994) 835.Google Scholar
16 Wang, D., Sigurdson, M. and Meinhart, C. D., Experiments in Fluid, 38 (2005) 1.Google Scholar
17 Feldman, H. C. Sigurdson, M., and Meinhart, C. D., Lab on a chip, 7 (200 2007) 1553.Google Scholar
18 Huang, K. R., Chang, J. S., Chao, S. D., Wu, K. C., Yang, C. K., Lai, C. Y., Chen, S. H., J. App. Phys. 104 (2008), 064702.Google Scholar
19 Yang, C. K., Chang, J. S., Chao, S. D., and Wu, K. C., App. Phys. Lett. 91. (20 2007) 113904.Google Scholar
20 Stratton, J. A., Electromagnetic Theory Theory, McGraw Hill, New York, 1941.Google Scholar
21 Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon, Oxford, 1959.Google Scholar
22 Langmuir, J. Am. Chem. Soc. 40 (1918), 1361.Google Scholar
23Comsol Multiphysics Version 3.4, COMSOL Ltd., Stokhelm, Sweden.Google Scholar