Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:06:37.707Z Has data issue: false hasContentIssue false

Enhanced photocurrent due to interband transitions from InAs quantum dots embedded in InGaAs quantum well solar cells

Published online by Cambridge University Press:  18 July 2013

R. Vasan*
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA
Y. F. M. Makableh
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA
J. C. Sarker
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA
M. O. Manasreh
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA
*
Get access

Abstract

Solar cells based on InAs quantum dots embedded in InxGa1-xAs quantum wells grown on n-type GaAs substrate were fabricated and tested. Solar cells with In mole fraction (x) in the range of 0-40% were investigated. The performance of the solar cells was evaluated using current-voltage characteristics, spectral response, and quantum efficiency measurements. The spectral response and quantum efficiency spectra possess several peaks along the lower energy side of the spectra, which are attributed to the interband transitions in the structure. These peaks are red shifted as x is increased above 0 %. The device power conversion efficiency was extracted from the current-voltage characteristics using an AM 1.5 solar simulator. The short circuit current density increased as the x is increased above 0 %. But the overall power conversion efficiency decreased due to decrease in the open circuit voltage. The decrease in open circuit voltage is due strain induced dislocations caused by lattice mismatch.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Luque, A. and Marti, A., Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
Luque, A. and Marti, A., Adv. Mat. 22, 160 (2010).CrossRefGoogle Scholar
Wu, J., Makableh, Y. F. M., Vasan, R., Manasreh, M. O., and Liang, B., Appl. Phys. Lett. 100, 1907 (2012).Google Scholar
Blokhin, S. A., Sakharov, A. V., Nadtochy, A. M., Pauysov, A. S., Maximov, M. V., Ledentsov, N. N., Kovsh, A. R., Mikhrin, S. S., Lantratov, V. M., and Mintairov, S. A., Semiconductors 43, 514 (2008).CrossRefGoogle Scholar
Zhou, D., Sharma, G., Thomassen, S. F., Reenaas, T. W., and Fimland, B. O., Appl. Phys. Lett. 96, 1913 (2010).Google Scholar
Hubbard, S. M., Cress, C. D., Bailey, C. G., Raffaelle, R. P., Bailey, S. G., and Wilt, D. M., Appl. Phys. Lett. 92, 3512 (2008).CrossRefGoogle Scholar
Bailey, C. G., Forbes, D. V., Raffaelle, R. P., and Hubbard, S. M., Appl. Phys. Lett. 98, 3105 (2011).CrossRefGoogle Scholar
Laouthaiwattana, K., Tangmattajittakul, O., Suraprapapich, S., Thainoi, S., Changmuang, P., Kanjanachuchai, S., Ratanathamaphan, S., and Panyakeow, S., Sol. Eng. Mat. Sol. Cells 93, 746 (2009).CrossRefGoogle Scholar
Wei, G. and Forrest, S. R., Nano Lett. 7, 218 (2006).CrossRefGoogle Scholar
Hu, D., McPheeters, C., Yu, E. T., and Schaadt, D. M., Nanoscale Res. Lett. 6, 83 (2011).CrossRefGoogle Scholar
Kuldova, K., Krapek, V., Hospodkova, A., Oswald, J., Pangrac, J., Melichar, K., Hulicius, E., Potemski, M., and Humlicek, J., Phys. Stat. Solidi (c) 3, 3811 (2006).CrossRefGoogle Scholar
Hospodkova, A., Hulicius, E., Oswald, J., Pangrac, J., Mates, T., Kuldova, K., Melichar, K., and Simecek, T., J. Cryst. Growth 298, 582 (2007).CrossRefGoogle Scholar
Nahory, R. E., Pollack, M. A., Johnston, W. D., and Barns, R. L., Appl. Phys. Lett. 33, 659 (1978).CrossRefGoogle Scholar
Shang, X. J., He, J. F., Wang, H. L., Li, M. F., Zhu, Y., Niu, Z. C., Fu, Y., Appl. Phys. A. 103, 335 (2011).CrossRefGoogle Scholar