Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T17:02:00.575Z Has data issue: false hasContentIssue false

Enhanced Magnetoelectric Response and Phonon Abnormality of Self-assembled Feather-like CoFe2O4-BaTiO3 Nanostructures

Published online by Cambridge University Press:  28 May 2012

Yu Deng
Affiliation:
Physics Dept. and Nation. Lab. of Microstructures., Nanjing Univ., Nanjing, China Center for Modern Analysis, Nanjing Univ., Nanjing, China
Di Wu
Affiliation:
Physics Dept. and Nation. Lab. of Microstructures., Nanjing Univ., Nanjing, China
Huiqiang Yu
Affiliation:
Center for Modern Analysis, Nanjing Univ., Nanjing, China
Youwei Du
Affiliation:
Physics Dept. and Nation. Lab. of Microstructures., Nanjing Univ., Nanjing, China
Get access

Abstract

Magnetoelectric (ME) (CoFe2O4)0.3-(BaTiO3)0.7 (CFO-BTO) nanostructures have been synthesized by a combinative using of hydrothermal reaction and polymer-assisted deposition. The feather-like nanostructures have an average diameter of 250nm and lengths up to 5μm, with the single-crystal CFO nanopillars embedded in the BTO matrix. The CFO-BTO nanostructures exhibit good magnetic (Ms=21.0emu/g, Mr=10.4emu/g and Hc=560.7Oe) and ferroelectric properties (Ps=10.5μC/cm2, Pr=5.6μC/cm2), as well as a large ME coefficient of 51.8mV/cmOe. A prominent phonon abnormality has also been detected between 110°C and 140°C. With emphasis on the novel microstructure, the ME response and phonon abnormality of the CFO-BTO nanostructures have been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zheng, H., Wang, J., Lofland, S. E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S. R., Ogale, S. B., Bai, F., Viehland, D., Jia, Y., Schlom, D. G., Wuttig, M., Roytburd, A., and Ramesh, R., Science 303, 661 (2004).CrossRefGoogle Scholar
Nan, C. W., Bichurin, M. I., Dong, S. X. and Viehland, D. and Srinivasan, G., J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
Zheng, H., Zhan, Q., Zavaliche, F. and Ramesh, R., Nano Lett. 61, 401 (2006).Google Scholar
Nan, C. W., Liu, G., Lin, Y. H. and Chen, H. D., Phys. Rev. Lett. 9, 197203 (2005).CrossRefGoogle Scholar
Wan, J. G., Zhang, H., Wang, X. W., Liu, J. M. and Wang, G. H., Appl. Phys. Lett. 89 122914 (2006).CrossRefGoogle Scholar
Li, Y., Gao, X. P., Li, G. R. and Zhu, H. Y., J. Phys. Chem. C 113, 4386 (2009).CrossRefGoogle Scholar
Luo, H. M., Yang, H. and Jia, Q. X., J. Am. Chem. Soc. 129, 14132 (2007).CrossRefGoogle Scholar
Deng, Y., Zhou, J. X.; Wu, D., Zhang, M. S. and Du, Y. W., Chem. Phys. Lett. 496, 301(2010)CrossRefGoogle Scholar
Wan, J. G., Weng, Y. Y., Liu, J. M. and Wang, G. H., Nanotechnology 18, 465708 (2007).CrossRefGoogle Scholar
Zhang, Y., Deng, C. Y., Ma, J., Lin, Y. H. and Nan, C. W., Appl. Phys. Lett. 92, 062911 (2008).CrossRefGoogle Scholar
Huang, W., Zhu, J., Zeng, H. Z., Wei, X. H., Zhang, Y. and Li, Y. R., Appl. Phys. Lett. 89, 2625 (2006).Google Scholar
Yu, T., Shen, Z. X., Shi, Y. and Ding, J., J. Phys.: Condens. Matter. 14, L613 (2002).Google Scholar
Zhao, L. J., Zhang, H. J., Xing, Y., Song, S. Y., Yu, S. Y., Shi, W. D., Guo, X. M., Yang, J. H., Lei, Y. Q., and Cao, F., J. Solid State Chem. 181, 245 (2008).CrossRefGoogle Scholar
Barbosa, J., Almeida, B., Mendes, J. A., Rolo, A. G. and Araújo, J. P., P hys. Stat. Sol. 204, 1731 (2007).CrossRefGoogle Scholar