Published online by Cambridge University Press: 01 February 2011
Ab initio electronic structure calculations within density functional theory have been carried out in pure GaSe and GaSe doped with substitutional impurities (Cd, In and Sn) at the Ga site in order to understand the nature of the defect states and how they depend on the nominal valence of these three impurities. We find that Cd impurity introduces a defect state located between 0.1 – 0.18 eV above the valence band, in good agreement with photoluminescence peaks seen at 0.13 eV and 0.18 eV. Using both experimental and theoretical effective mass parameters we show that effective mass model fails to describe these acceptor states. Sn changes the single particle density of states (DOS) near the bottom of the conduction band, and gives rise to resonant states deep in the valence band. In, on the other hand, behaves like Ga, it does not make noticeable change in the DOS of the host GaSe crystal.