Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:17:55.603Z Has data issue: false hasContentIssue false

Electron Beam Induced Two-State Noise in Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Jack Chan
Affiliation:
twc5x@virginia.edu, University of Virginia, Physics, Charlottesville, Virginia, United States
Brian G. Burke
Affiliation:
bgb9q@virginia.edu, University of Virginia, Physics, 382 McCormick Rd., Charlottesville, Virginia, 22904, United States
Chong Hu
Affiliation:
ch3tr@virginia.edu, University of Virginia, Electrical and Computer Engineering, Charlottesville, Virginia, United States
Joe Campbell
Affiliation:
jcc7s@virginia.edu, University of Virginia, Electrical and Computer Engineering, Charlottesville, Virginia, United States
Lloyd Harriott
Affiliation:
lrh8t@virginia.edu, University of Virginia, Electrical and Computer Engineering, Charlottesville, Virginia, United States
Keith A. Williams
Affiliation:
kwilliams@virginia.edu, University of Virginia, Physics, Charlottesville, Virginia, United States
Get access

Abstract

Discrete current switching is induced in carbon nanotubes by electron beam irradiation. Switching amplitudes of 3% to 6% are observed at room temperature. Switching is created by electron beam exposure with dosage as low as 1000 pC/cm. Relative switching amplitude remains constant as the bias voltage varies, suggesting that current fluctuation is dominated by mobility fluctuation. Changes in the noise power spectral density following electron beam exposure will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rius, G.. et al., Microelectronics Engineering 84, 1596 (2007).Google Scholar
2. Yuzvinsky, T. D., Fennimore, A. M., Mickelson, W., Esquivias, C. and Zettl, A., Appl. Phys lett. 86, 053109 (2005).Google Scholar
3. Holmes-Siedle, A., Nucl. Instr. Methods A 121, 169 (1974).Google Scholar
4. Kanzaki, K.. et al., J. Appl. Phys. 101, 034317 (2007).Google Scholar
5. Suzuki, S., Kanzaki, K., Homma, Y., and Fukuba, S., Jpn. J. Appl. Phys. 43, L1118 (2004).Google Scholar
6. Terrones, M., Banhart, F., Grobert, N., Charlier, J. C., Terrones, H., and Ajayan, P. M., Phys. Rev. Lett. 89, 7 (2002).Google Scholar
7. Vijavaraghavan, A.. et al., Nano. Lett. 5, 8 (2005).Google Scholar
8. Marquardt, C. W.. et al., Nano. Lett. 8, 9 (2008).Google Scholar
9. Crespi, V. H., Chopra, N. G., Cohen, M. L., Zettl, A. and Louie, S. G., Phys. Rev. B 54, 8 (1996).Google Scholar
10. Collins, P. G., Fuhrer, M. S. and Zettl, A., Appl. Phys. Lett. 76, 7 (2000).Google Scholar
11. Snow, E. S., Novak, J. P., Lay, M. D. and Perkins, F. K., Appl. Phys. Lett. 85, 18 (2004).Google Scholar
12. Lin, Y., Appenzeller, J., Knoch, J., Chen, Z. and Avouris, Ph., Nano. Lett. 6, 930 (2006).Google Scholar
13. Chan, J.. et al., Phys. Rev. B 80, 033402 (2009).Google Scholar
14. Kim, U. J., Kim, K. H., Kim, K. T., Min, Y. and Park, W., Nanotech. 19, 285705 (2008).Google Scholar
15. Liu, F., Bao, M., Want, K. L., Zhang, D. and Zhou, C., Phys. Rev. B 74, 035438 (2006).Google Scholar
16. Peng, H. B., Hughes, M. E. and Golovchenko, J. A., Appl. Phys. Lett. 89, 243502 (2006).Google Scholar
17. Vasudevan, S.. et al., IEEE. Sensor Journal 8, 6 (2008).Google Scholar
18. Collins, P. G.. et al., Science 287, 1801 (2000).Google Scholar
19. Vijayaraghavan, A.. et al., J. Appl. Phys. 100, 024315 (2006).Google Scholar
20. Liu, K.. et al., JACS. 131, 62 (2009).Google Scholar
21. Lin, Y., Tsang, J. C., Freitag, M. and Avouris, Ph., Nanotech. 18, 295202 (2007).Google Scholar
22. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. and Dai, H., Nature 395, 29 (1998).Google Scholar
23. Simons, M., Monteith, L. K. and Hauser, J. R., IEEE Transactions on Electronics Devices 15, 12 (1968).Google Scholar
24. Gdula, R. A., IEEE Transactions on Electronics Devices 26, 4 (1979).Google Scholar
25. Liu, F., Wang, K. L., Zhang, D. and Zhou, C., Appl. Phys.Lett. 89, 063116 (2006).Google Scholar
26. ishigami, M.. et al., Appl. Phys. Lett. 88, 203116 (2006).Google Scholar
27. Wang, N., Heinze, S. and Tersoff, J., Nano. Lett. 7, 913 (2007).Google Scholar