Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:47:09.139Z Has data issue: false hasContentIssue false

Electrofluidic Assembly of Nanoelectromechanical Systems

Published online by Cambridge University Press:  15 March 2011

Stephane Evoy
Affiliation:
Now at the University of Pennsylvania:, evoy@ee.upenn.edu
Ben Hailer
Affiliation:
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061
Martin Duemling
Affiliation:
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061
Benjamin R. Martin
Affiliation:
Department of Chemistry and Department of Electrical Engineering, Penn State University, University Park, PA 16802
Thomas E. Mallouk
Affiliation:
Department of Chemistry and Department of Electrical Engineering, Penn State University, University Park, PA 16802
Irena Kratochvilova
Affiliation:
Department of Chemistry and Department of Electrical Engineering, Penn State University, University Park, PA 16802
Theresa S. Mayer
Affiliation:
Department of Chemistry and Department of Electrical Engineering, Penn State University, University Park, PA 16802
Get access

Abstract

Recent advances in surface nanomachining have allowed the fabrication of mechanical structures with dimensions reaching 20 nm, and resonant frequencies in the 100s of MHz. Structural issues prevent the “top-down” surface machining of high-quality NEMS resonators. Such systems are alternatively to be bestowed by “bottom-up” manufacturing technologies. We report the surface assembly of RF-range NEMS. Using electrofluidic assembly, we have successfully positioned Rh mechanical beams onto specific sites of a silicon circuit. With diameters as small as 250 nm and lengths varying from 2 to 3 [.proportional]m, preliminary results show mechanical resonances ranging from 5 MHz to 80 MHz, and quality factors reaching 500. We also report the development of nanostructured NEMS for sensor applications, and present strategies for their deployment in integrative nanosystems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Craighead, H. G., “Nanoelectromechanical Systems”, Science 290, 1532 (2000).Google Scholar
[2] Carr, D. W. and Craighead, H. G., J. Vac. Sci. Technol. B 15, 2760 (1997).Google Scholar
[3] Cleland, A.N. and Roukes, M.L., App. Phys. Lett., 69, 2653 (1996).Google Scholar
[4] Evoy, S., Carr, D. W., Sekaric, L., Olkhovets, A., Parpia, J. M., and Craighead, H. G., J. Appl. Phys. 86, 6072 (1999).Google Scholar
[5] Evoy, S., Carr, D. W., Olkhovets, A., Sekaric, L., Parpia, J. M., and Craighead, H. G., Appl. Phys. Lett. 77, 2397 (2000).Google Scholar
[6] Carr, D. W., Evoy, S., Sekaric, L., Olkhovets, A., Parpia, J. M., and Craighead, H. G., Appl. Phys. Lett., 17, 1545 (2000).Google Scholar
[7] Olkhovets, A., Evoy, S., Carr, D.W., Parpia, J. M., Craighead, H.G., J. Vac. Sci. Technol B 18, 3549 (2000).Google Scholar
[8] Sekaric, L., Carr, D.W., Evoy, S., Parpia, J. M., and Craighead, H. G., MRS Fall 1999 meeting.Google Scholar
[9] Carr, D. W., Evoy, S., Sekaric, L., Parpia, J. M., and Craighead, H. G., Appl. Phys. Lett. 75, 920 (1999).Google Scholar
[10] Barnhart, W., Duemling, M., Raman, S., and Evoy, S., unpublished.Google Scholar
[11] Smith, P.A., Nordquist, C.D. CD, , Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., and Mallouk, T.E.. Appl. Phys. Lett. 77, 1399 (2000).Google Scholar
[12] “Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration,” ASTM C1259-98.Google Scholar
[13] http://www.webelements.com/webelements/elements/text/Rh/phys.htmlGoogle Scholar
[14] Yasumura, K. Y., Stowe, T. D., Chow, E. M., Pfafman, T., Kenny, T.W., Stipe, B. C., and Rugar, D., IEEE J. MEMS 9, 11 (2000).Google Scholar
[15] Clark, J.R., Hsu, W.-T., and Nguyen, C.T.-C., 2000 Intl. Electron Devices Meeting Technical Digest, pp. 493496.Google Scholar
[16] Yanga, J., Ono, T., and Esashi, Masayoshi, J. Vac. Sci. Technol. B 19, 551 (2001).Google Scholar
[17] Sekaric, L., Zalalutdinov, M., Parpia, J.M., and Craighead, H.G., Fall MRS '01 meeting, abstract B4.2.Google Scholar
[18] Smith, B.W., Monthioux, M. and Luzzi, D.E., Nature 396 (1998) 323.Google Scholar
[19] Yang, Y. T., Ekinci, K. L., Huang, X. M. H., Schiavone, L. M., Roukes, M. L., Zorman, C. A. and Mehregany, M., Appl. Phys. Lett. 78, 162 (2001).Google Scholar
[20] Sherer, A., and Craighead, H. G., Appl. Phys. Lett. 49, 1284 (1986).Google Scholar
[21] Clausen, E.M., Craighead, H. G., Harbison, J. P., Scherer, A., Schiavone, L. M., Gaag, B. Van der, and Florez, L.T., J. Vac. Sci. Technol. B. 7, 2011 (1989).Google Scholar
[22] Kazinczi, R., Mollinger, J.R., and Bossche, A., Proc. IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, pp.229–34. Piscataway, NJ, USA. Google Scholar
[23] Kazinczi, R., Mollinger, J.R., and Bossche, A., presented at the 2000 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida (unpublished).Google Scholar
[24] Wilson, C.J. and Beck, P.A, IEEE J. MEMS 5, pp.142–50 (1996).Google Scholar