Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:04:43.188Z Has data issue: false hasContentIssue false

Electrical Transport in Ultrathin NdNiO3 Films

Published online by Cambridge University Press:  12 June 2012

Megan Campbell
Affiliation:
Nanostructured Materials Research Laboratory University of Utah, Department of Materials Science & Engineering
Ashutosh Tiwari*
Affiliation:
Nanostructured Materials Research Laboratory University of Utah, Department of Materials Science & Engineering
Get access

Abstract

Electrical transport properties in ultrathin NdNiO3 films grown on single crystal LaAlO3(001) substrate were characterized. Films with thicknesses ranging from 0.6 nm to 12 nm were grown using a pulsed laser technique. Four probe resistivity as a function of temperature measurements indicated a strong dissipation of strain effects from 0.6 nm to 6 nm as well as the presence of defects in the 12 nm sample. A proposed mechanism of kinetically stable glassy phase formation explains the time dependence of the resistivity in both cooling and heating cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bednorz, J. G. and Müller, K. A., Z. Phys. B. – Condens. Matter 64, 2 (1986).CrossRefGoogle Scholar
Bussmann-Holder, A., Simon, A., and Buttner, H., Phys. Rev. B. 39, 1 (1989).Google Scholar
Ramirez, A. P., J. Phys.: Condens. Matter 9, 39 (1997)Google Scholar
Felser, C., Fecher, G. H., and Balk, B., Angewandte Chemie International Edition 46, 5 (2007).CrossRefGoogle Scholar
Schmid, H., Ferroelectrics 162, 1 (1994).CrossRefGoogle Scholar
Eerenstein, W., Mathur, N. D., and Scott, J. F., Nature 442, 7104 (2006).CrossRefGoogle Scholar
Scherwitzl, R., Zubko, P., Lezama, I. G., Ono, S., Morpurgo, A. F., Catalan, G., and Triscone, J. M., Adv. Mater. 22, 48 (2010).CrossRefGoogle Scholar
Dobin, A. Yu. et al. ., Phys. Rev. B. 68, 11 (2003).CrossRefGoogle Scholar
Garcia-Munoz, J. L., Rodriguez-Carvajal, J., Lacorre, P., and Torrance, J. B. Phys. Rev. B. 46, 8 (1992).CrossRefGoogle Scholar
Torrance, J. B., Lacorre, P., Nazzal, A.I., Ansaldo, E.J., and Niedermayer, Ch., Phys. Rev. B. 45, 14 (1992).CrossRefGoogle Scholar
Medarde, M. et al. ., Phys. B (Amsterdam, Neth.) 234-236 (1997).Google Scholar
Mallik, R., Sampathkumaran, E. V., Alonso, J. A., and Martinez-Lope, M. J., J. Phys.: Condens. Matter 10, 18 (1998).Google Scholar
Granados, X., Fontcuberta, J., and Obradors, X., Manosa, Ll., and Torrance, J. B. Phys Rev. B. 48, 16 (1993).CrossRefGoogle Scholar
Tiwari, A., Narayan, J. Jin, C., and Kvit, A., Appl. Phys. Lett. 80, 8 (2002).Google Scholar
Blasco, J., Castro, M., and Garcia, J., J. Phys.: Condens. Matter 6, 30 (1994).Google Scholar
Lorenzo, J. E., et al. , Phys. Rev. B. 71, 4 (2005).CrossRefGoogle Scholar
Liu, J., Kareev, M., Gray, B., Kim, J. W., Ryan, P., Dabrowski, B., Freeland, J. W., and Chakhalian, J., Appl. Phys. Lett. 96, 23 (2010).Google Scholar
Venimadhav, A., Chaitanyalakshmi, I., and Hegde, M.S., Mater. Res. Bull. 37, 2 (2002)CrossRefGoogle Scholar
Kumar, D., Rajeev, K.P., Alonso, J.A., and Martinez-Lope, M.J., J. Phys.: Condens. Matter 21, 48 (2009).Google Scholar
Kumar, D., Rajeev, K.P., Alonso, J.A., and Martinez-Lope, M.J., J. Phys.: Condens. Matter 21, 18 (2009).Google Scholar