Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:38:26.619Z Has data issue: false hasContentIssue false

Electrical Properties of Silicon with Bistable Impurity Complexes

Published online by Cambridge University Press:  31 January 2011

Smagul Zh. Karazhanov
Affiliation:
smagul.karazhanov@ife.no, Institute for Energy Technology, Department for Solar Energy, Kjeller, Norway
Tine U Nærland
Affiliation:
tine.uberg.naerland@ife.no, Institute for Energy Technology, Department for Solar Energy, Kjeller, Norway
Jeyanthinath Mayandi
Affiliation:
mayandi.jeyanthinath@ife.no, Institute for Energy Technology, Department of Solar Energy, Kjeller, Norway
Rune Søndenå
Affiliation:
Rune.Soendenaa@ife.no, Institute for Energy Technology, Department for Solar Energy, Kjeller, Norway
Arve Holt
Affiliation:
arve.holt@ife.no, Institute for Energy Technology, Department for Solar Energy, Kjeller, Norway
Get access

Abstract

Many impurity complexes in silicon such as boron-oxygen and iron-boron complexes are found to be bistable. Commonly bistable recombinative complexes in silicon are studied through carrier lifetime experiments and are analysed by use of Shockley-Read-Hall (SRH) recombination theory. SRH recombination theory is valid for stable defects with one configuration and one energy level in the band gap, however, the theory might fail upon considering the recombination centers through bistable defects, which can be in two different configurations separated by a potential barrier. This work presents a study of electrical properties of silicon with bistable impurity complexes. The analysis has been performed for statistics of free electrons and holes, their recombination rate and lifetime. The results have been compared with those obtained from the Shockley-Read-Hall recombination theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Landsberg, P. T. Recombination in semiconductors. (Cambridge Univ. Press, Cambridge, UK, 1991).Google Scholar
2 Rein, S. Rehrl, T. Warta, W. and Glunz, S. W. J. Appl. Phys. 91 (4), 20592070(2002).Google Scholar
3 Rein, S. Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications. (Springer-Verlag Berlin Heidelberg, 2005).Google Scholar
4 Ahrenkiel, R. K. Keyes, B. M. and Johnston, S. Surf. Eng. 16 (1), 5460(2000).Google Scholar
5 Shockley, W. and Read, W. T. Phys. Rev. 87 (5), 835842(1952).Google Scholar
6 Hall, R. N. Phys. Rev. J1 - PR 87 (2), 387 LP -387(1952).Google Scholar
7 Keevers, M. J. and Green, M. A. J. Appl. Phys. 75 (8), 40224031(1994).Google Scholar
8 Bube, R. H. Photoelectronic Properties of Semiconductors (Cambridge University Press, New York, NY 10011-4211, USA, 1992).Google Scholar
9 Song, L. W. Zhan, X. D. Benson, B. and Watkins, G. D. Phys. Rev. B 42, 5765(1990).Google Scholar
10 Dolgolenko, A. Varentsov, M. and Gaidar, G. Phys. Status Solidi (b) 241 (13), 29142922(2004).Google Scholar
11 Song, L. W. Zhan, X. D. Benson, B. W. and Watkins, G. D. Phys. Rev. Lett. 60 (5), 460463(1988).Google Scholar
12 Chantre, A. Appl. Phys. A: Mater. Sci. Process. 48 (1), 39(1989).Google Scholar
13 Greulich-Weber, S., Görger, A., Spaeth, J. M. and Overhof, H. Appl. Phys. A: Mater. Sci. Process. 53 (2), 147154(1991).Google Scholar
14 Lindstrom, J. L. Murin, L. I. Svensson, B. G. Markevich, V. P. and Hallberg, T. Phys. B 340, 509513(2003).Google Scholar
15 Murin, L. I. Markevich, V. P. Medvedeva, I. F. and Dobaczewski, L. Semicond. 40 (11), 12821286(2006).Google Scholar
16 Estreicher, S. K. Seager, C. H. and Anderson, R. Appl. Phys. Lett. 59 (14), 1773(1991).Google Scholar
17 Zhan, X. D. and Watkins, G. D. Phys. Rev. B 47 (11), 63636379(1993).Google Scholar
18 Mukashev, B. N. Abdullin, K. A. and Gorelkinskii, Y. V. Uspekhi Fiz. Nauk 170 (2), 143155(2000).Google Scholar
19 Lim, B. Bothe, K. and Schmidt, J. Phys. Status Solidi. RRL 2 (3), 9395(2008).Google Scholar
20 Schmidt, J. and Bothe, K. Phys. Rev. B 69 (2), 024107(2004).Google Scholar
21 Adey, J. Jones, R. Palmer, D. W. Briddon, P. R. and Oberg, S. Phys. Rev. Lett. 93 (5), 055504(2004).Google Scholar
22 Bothe, K. Hezel, R. and Schmidt, J. Appl. Phys. Lett. 83 (6), 11251127(2003).Google Scholar
23 Bothe, K. and Schmidt, J. J. Appl. Phys. 99 (1), 013701(2006).Google Scholar
24 Schmidt, J. and Cuevas, A. J. Appl. Phys. 86 (6), 31753180(1999).Google Scholar
25 Du, M. H. Branz, H. M. Crandall, R. S. and Zhang, S. B. Phys. Rev. Lett. 97 (25), 256602(2006).Google Scholar
26 Palmer, D. W. Bothe, K. and Schmidt, J. Phys. Rev. B 76 (3), 035210(2007).Google Scholar