Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T05:59:11.695Z Has data issue: false hasContentIssue false

Electrical Properties of Alkyl-Trichlorosilane Monolayers Grafted on Silicon Substrate

Published online by Cambridge University Press:  16 February 2011

Dominique Vuillaume
Affiliation:
Institut d'Electronique et de Microélectronique du Nord (IEMN), UMR 9929, C.N.R.S., Institut Supérieur d'Electronique du Nord (ISEN), 41 Boulevard Vauban, 59046 LILLE, France.
Francis Rondelez
Affiliation:
Laboratoire de Physico-chimie des Surfaces et Interfaces, URA 1379, C.N.R.S., Institut Curie, Section de Physique et Chimie, 11 rue Pierre et Marie Curie, 75231 PARIS, France.
Get access

Abstract

We demonstrate that a single monolayer of alkyl-trichlorosilane Molecules, covalently grafted to the native oxide of a silicon substrate, allows to fabricate silicon based MIS (Metal-Insulator-Semiconductor) devices with excellent electrical properties. The thickness of the organic monolayer is in the range 1.5–2.8 nm, corresponding to long alkyl chains with 8 to 18 carbon atoms. We have fabricated MIS capacitors with a leakage current density as low as 10-8 A/cm2 at 6 MV/cm, high dielectric breakdown field (12 MV/cm), electrically active defect density lower than 1011 cm-2, and low field dc conductivity as low as 10-16–10-15 Scm-1. Thermal stability has been demonstrated up to 450 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Roberts, G.G., Langmuir-Blodgett Films. (Plenum Press, New York, 1990), pp. 368389.Google Scholar
2. Maoz, R. and Sagiv, J., J. of Colloid and Int. 100, 1836 (1984).Google Scholar
3. Brzoska, J-B., Shahidjadeh, N. and Rondelez, F., Nature 360, 719 (1992).Google Scholar
4. Goldmann, M. (private communication);Google Scholar
Tidswell, I.M., Rabedeau, T.A., Pershan, P.S., Kosowsky, S.D., Folkers, J.P. and Whitesides, G.M., J. Chem. Phys. 95, 2854 (1991).CrossRefGoogle Scholar
5. Barrat, A., Silberzan, P., Bourdieu, L. and Chatenay, D., Europhys. Lett. 20, 633 (1992).Google Scholar
6. Angst, D.L. and Simmons, G.W., Langmuir 7, 2236 (1991).CrossRefGoogle Scholar
7. Parikh, A.N., Aliara, D.L. and Rondelez, F., Submitted to Nature.Google Scholar
8. Polymeropoulos, E.E. and Sagiv, J., J. Chem. Phys. 69, 1836 (1978).Google Scholar
9. Fontaine, P., Goguenheim, D., Deresmes, D., Vuillaume, D., Garet, M. and Rondelez, F., Appl. Phys. Lett. 62, 2256 (1993).Google Scholar
10. Vuillaume, D., Goguenheim, D. and Bourgoin, J.C., Appl. Phys. Lett. 58, 490 (1991).CrossRefGoogle Scholar
11. Wasserman, S.R.; Tao, Y.T. and Whitesides, G.M., Langmuir 7, 1647 (1991).Google Scholar
12. Polymeropoulos, E.E., J. Appl. Phys. 48, 2404 (1977).Google Scholar