No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
GaN metal oxide semiconductor diodes were demonstrated utilizing MgO as the gate oxide. MgO was grown at 100°C on MOCVD grown n-GaN in a molecular beam epitaxy system using a Mg elemental source and an electron cyclotron resonance oxygen plasma. H3PO4 based wet-chemical etchant was used to remove MgO to expose the underlying n-GaN for ohmic metal deposition. Electron deposited Ti/Al/Pt/Au and Pt/Au were utilized as ohmic and gate metallization, respectively. An interface trap density of low-to-mid 1011 eV-1cm-2was obtained from temperature conductance-voltage measurements. Terman method was also used to estimate the interface trap density and a slight lower number was obtained as compared to the conductance method. Results from elevated temperature (up to 300°C) conductance measurements showed an interface state density roughly three times higher(6x1011 eV–1 cm-2 ) than at 25°C.