Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:03:18.306Z Has data issue: false hasContentIssue false

Elaboration of Single Crystalline AU/NI80FE20/CU/NI80FE20/NIO(111) Spin Valves

Published online by Cambridge University Press:  10 February 2011

C. Mocuta
Affiliation:
CEA-Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, 17, rue des Martyrs, 38054 Grenoble, France, cmocuta@cea.fr
A. Barbier
Affiliation:
CEA-Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, 17, rue des Martyrs, 38054 Grenoble, France
S. Lafaye
Affiliation:
CEA-Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, 17, rue des Martyrs, 38054 Grenoble, France
P. Bayle-Guillemaud
Affiliation:
CEA-Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, 17, rue des Martyrs, 38054 Grenoble, France
Get access

Abstract

The successful preparation of fully epitaxial spin-valves elaborated on NiO(111) single crystals is reported. The growth conditions of a smooth 2D permalloy (Py = Ni80Fe20) layer have been determined. A very strong magnetic exchange interaction is evidenced on the Py/NiO(111) interface. It strongly modifies the magnetic properties of Py that acquires high coercivity, leaving it as a hard magnetic material. The second Py layer has unchanged magnetic properties and plays the role of the sensing soft magnetic layer. A giant magnetoresistance (GMR) of 3.5% at room temperature was easily obtained without optimizing the thickness of the different layers. Complementarily energy-filtered (EF-) and high-resolution (HR-) transmission electron microscopy (TEM) were used to fully characterize the spin valves. Within the framework of magnetic exchange coupling, our results open the possibility to elaborate model spin valves in which the role of each interface can be investigated and controlled at the atomic level. The detrimental effect of an inter-diffusion at the Py/NiO interface is evidenced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kools, J.C.S., IEEE Trans.Magn. 32, p. 3165, (1996)Google Scholar
[2] Hamakawa, Y., Hoshiya, H., Kawabe, T., Suzuki, Y., Arai, R., Nakamoto, K., Fuyama, M., Sugita, K., IEEE Trans.Magn. 32, p. 149, (1996)Google Scholar
[3] Nakamoto, K., Kawato, Y., Suzuki, Y., Hamakawa, T., Kawabe, T., Fujimoto, K., Fuyama, M., Sugita, Y., IEEE Trans.Magn. 32, p. 3347, (1996)Google Scholar
[4] Roth, W.L., J.Appl.Phys, 31, p. 2000, (1960); J. Baruchel, M. Schlenjer, K. Kurosawa, S. Saito, Philos.Mag. 43, p. 835, (1981)Google Scholar
[5] Barbier, A., Renaud, G., Mocuta, C., Stierle, A., Surf.Sci. 433–435, p. 761, (1999)Google Scholar
[6] Barbier, A., Mocuta, C., Kuhlenbeck, H., Peters, K. F., Richter, B., Renaud, G., Phys.Rev.Lett. 84, p. 2897, (2000)Google Scholar
[7] Wolf, D., Phys.Rev.Lett. 68, p. 3315, (1992)Google Scholar
[8] Bayle-Guillemaud, P., Barbier, A., Mocuta, C., Ultramicroscopy (submitted); C. Mocuta, A.Barbier, G.Renaud, P.Bayle-Guillemaud, in preparationGoogle Scholar
[9] Mocuta, C., Barbier, A., Renaud, G., Dieny, B., Thin Solid Films 336, p.160, (1998)Google Scholar
[10] Lai, C.-H., Anthony, T.C., Iwamura, E., White, R.L., IEEE Trans.Magn. 32, p.3419, (1996)Google Scholar