Published online by Cambridge University Press: 17 March 2011
We employ surface-embedded-atom-method potentials to investigate the diffusion barriers of vacancies diffusing over and near steps on the low index faces of silver. Barriers for vacancy terrace diffusion, diffusion over step-edges, and diffusion along step edges, including around corners, are calculated. Vacancies are significantly less mobile than adatoms and have large Ehrlich-Schwoebel (ES) barriers on all three faces. For Ag(100) the diffusion barrier for vacancies along step-edges is virtually the same (474 meV) as on the terrace. As in diffusion near the step edge, vacancies encounter a significant increase (213 meV) in the activation barrier when diffusing around the corner of a vacancy island (the corner analogue of the ES barrier), but the excess barrier around a kink all but disappears because exchange diffusion is favorable there. The consequences of the vacancy diffusion barriers on 3D pitting and on island diffusion and coarsening are discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.