No CrossRef data available.
Published online by Cambridge University Press: 18 May 2012
Cerium in various chemical forms was introduced into NaAlH4 to study the hydrogen sorption properties of the resulted material. Although all the Ce precursors tested in this work resulted in a reversible hydrogen storage material, an immediate enhancement in the desorption kinetics could be achieved by a heating treatment, resulting in the in situ formation of cerium aluminide (CeAl4) in the material. While the use of CeAl4 instead of CeCl3 can increase the hydrogen capacity by bypassing the formation of the ineffective NaCl, the highest capacity of 4.9 wt% was obtained from NaAlH4 doped directly with commercial metallic cerium, which may provide a much simplified process for a possible up-scaling preparation of this hydrogen storage material.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.