Published online by Cambridge University Press: 11 February 2011
Dielectric properties of single walled carbon nanotube assemblies were calculated with an effective medium approximation at frequencies from 200 MHz to 200 GHz. The model treats the carbon nanotubes as layered cylinders, each with a core, a graphene layer and an outer layer, to investigate the dielectric properties of coated and filled nanotubes. The graphene and metal layer properties were modeled with a Drude approximation based on literature data. A generalized Bruggeman model was then used to determine the macroscopic behavior of the modified carbon nanotubes in a composite structure as a function of volume fraction, frequency, and aspect ratio. The depolarization factors in this model were scaled by the normalized effective permittivity to better account for percolation behavior. The model showed a wide variety of frequency dependent dielectric properties. Uncoated tubes were calculated to form highly conductive materials at volume fractions of just a few percent and metal-coated tubes enhanced the conductivity by an order of magnitude. Calculations of nanotubes with insulating coatings showed that high dielectric constants with moderate to low dielectric loss were possible.