Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:51:19.664Z Has data issue: false hasContentIssue false

Effect of Ligand Exchange on the Stability and Optical Properties of CdSe Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Jacqueline T. Siy
Affiliation:
jtsiy@chem.utah.edu, University of Utah, Department of Chemistry, 315 South 1400 East, Rm 2020, Salt Lake City, UT, 84112, United States
Lindsay Leone
Affiliation:
leonel@webmail.washjeff.edu, University of Utah, Department of Chemistry, 315 South 1400 East, Rm 2020, Salt Lake City, UT, 84112, United States
Michael H. Bartl
Affiliation:
bartl@chem.utah.edu, University of Utah, Department of Chemistry, 315 South 1400 East, Rm 2020, Salt Lake City, UT, 84112, United States
Get access

Abstract

A new post-synthesis heat/ligand-exchange treatment on CdSe nanocrystal quantum dots that allows fine-tuning the quantum dots size without losing important properties (e.g. photoluminescence) is presented. The careful control of parameters such as the reaction temperature, the quantum dot to alkyl-amine ligand mole ratio and the solvent volume is shown to provide tunable size reduction of the nanocrystals. This size reduction phenomenon provides new insights into the surface chemistry and stability of nanocrystals and can serve as a platform for designing, controlling and processing nanomaterials with tailored properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P, P., A. Science, 1998, 281, 2013.Google Scholar
2. Michalet, X., Pinaud, F. F, Bentolila, L. A, Tsay, J. M, Doose, S., Li, J. J, Sundaresan, G., Wu, A. M, Gambhir, S. S, and Weiss, S., Science, 2005, 307, 538.Google Scholar
3. Alivisatos, A. P, Gu, W., & Larabell, C., Annu. Rev. Biomed. Eng. 2005, 7, 55.Google Scholar
4. Tessler, N., Medvedev, V., Kazes, M., Kan, S., & Banin, U., Science, 2002, 295, 1506.Google Scholar
5. Kazes, M., Lewis, D., Ebenstein, Y., Mokari, T., & Banin, U., Adv. Mater. 2002, 14, 317.Google Scholar
6. Cha, J. N, Bartl, M.H., Wong, M.S., Popitsch, A., Deming, T.J., & Stucky, G.D., Nano Lett. 2003, 3, 907.Google Scholar
7. Huynh, W. U, Dittmer, J. J, & Alivisatos, A. P, Science, 2002, 29, 2425.Google Scholar
8. Lin, X. M, Sorensen, C. M, Klabunde, K. J, J. of Nanoparticle Research, 2000, 2, 157.Google Scholar
9. Prasad, B. L. V., Stoeva, S. I, Sorensen, C. M, & Klabunde, K. J, Chem. Mater. 2003, 15, 935.Google Scholar
10. Qu, L., Peng, A., & Peng, X., Nanoletters, 2001, 1, 333.Google Scholar
11. Yu, W. W, Qu, L., Guo, W., & Peng, X., Chem. Mater. 2003, 15, 2854.Google Scholar