Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:49:00.876Z Has data issue: false hasContentIssue false

Effect of Impressing Rate of Field on Polarization Reversal in Mg Doped Near Stoichiometric Lithium Tantalate Single Crystals

Published online by Cambridge University Press:  01 February 2011

Sarveswaran Ganesamoorthy
Affiliation:
Opto Single Crystal Group, Advanced Materials Laboratory, National Institute of Materials Science, 1–1, Namiki, Tsukuba-Shi, Ibaraki 305 0044, Japan
Masaru Nakamura
Affiliation:
Opto Single Crystal Group, Advanced Materials Laboratory, National Institute of Materials Science, 1–1, Namiki, Tsukuba-Shi, Ibaraki 305 0044, Japan
Shunji Takekawa
Affiliation:
Opto Single Crystal Group, Advanced Materials Laboratory, National Institute of Materials Science, 1–1, Namiki, Tsukuba-Shi, Ibaraki 305 0044, Japan
Somu Kumaragurubaran
Affiliation:
Opto Single Crystal Group, Advanced Materials Laboratory, National Institute of Materials Science, 1–1, Namiki, Tsukuba-Shi, Ibaraki 305 0044, Japan
Kazuya Terabe
Affiliation:
Opto Single Crystal Group, Advanced Materials Laboratory, National Institute of Materials Science, 1–1, Namiki, Tsukuba-Shi, Ibaraki 305 0044, Japan
Kenji Kitamura
Affiliation:
Opto Single Crystal Group, Advanced Materials Laboratory, National Institute of Materials Science, 1–1, Namiki, Tsukuba-Shi, Ibaraki 305 0044, Japan
Get access

Abstract

The coercive field measured from ferroelectric hysteresis loop for pure and Mg:SLT (0.5 mol% doped) crystals were found to be independent of ramp rate of voltage, while it depends strongly on ramp rate for Mg:SLT (1 mol% doped) crystals. The measured coercive field decreased monotonously depending on the Mg concentration and low Ec value of 6 kV/cm is obtained for Mg(1.0 mol%)SLT crystal. Internal field of about 1 kV/cm present in pure SLT completely gets vanished in Mg(1.0 mol%)SLT. Spontaneous polarization is insensitive to the Mg addition. The origin of the internal field and large changes in switching fields appear largely to be dependent on the [Li]/[Li+Ta] ratio in crystals. On repeated cycling, the coercive field is found to have a marginal variation in pure and Mg doped SLT crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hatanaka, T., Nakamura, K., Taniuchi, T., Ito, H., Furukawa, Y. and Kitamura, K., Opt. Lett. 25, 651 (2000).Google Scholar
2. Furukawa, Y., Nakamura, M., Takekawa, S., Kitamura, K., Hatanaka, T., Namkamura, K., Ito, H., Alexandrovski, A. and Fejer, M. M., “Advanced Solid State Lasers”, ed. Marshall, C., OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), 50, pp.685687.Google Scholar
3. Furukawa, Y., Kitamura, K., Suzuki, E. and Niwa, K., J. Crystal Growth 197, 889 (1999).Google Scholar
4. Shur, V. Ya., Rumyantsev, E. L., Nikolaeva, E. V., Shishkin, E. I., Batchko, R. G., Fejer, M. M. and Byer, R. L., Ferroelectrics 257, 191 (2001).Google Scholar
5. Yamada, M., Nada, N., Saitoh, M. and Watanabe, K., Appl. Phys. Lett. 62, 435 (1993).Google Scholar
6. Miyazawa, S. and Iwasaki, H., J. Crystal Growth 10, 276 (1971).Google Scholar
7. Bordui, P. F., Norwood, R. G., Bird, C. D. and Carella, J. T., J. Appl. Phys. 78, 4747 (1995).Google Scholar
8. Katz, M., Route, R.K., Hum, D. S., Parameswaran, K. R., Miller, G.D. and Fejer, M. M., Optics Letters 29, 1775 (2004).Google Scholar
9. Nakamura, M., Takekawa, S., Furukawa, Y. and Kitamura, K., J. Crystal Growth 245, 267 (2002).Google Scholar
10. Kumaragurubaran, S., Takekawa, S., Nakamura, M., Yu, N., Kurimura, S. and Kitamura, K., “Advanced Materials for Optoelectronics” ed. Jayavel, R. and Kitamura, K., (Vijay Nicole, Publication India, 2004) pp.227232.Google Scholar
11. Iyi, N., Yajima, Y. and Kitamura, K., J. Solid State Chem. 118, 148 (1995).Google Scholar
12. Furukawa, Y., Kitamura, K., Takekawa, S., Niwa, K., Yajima, Y., Iyi, N., Mnushkina, I., Guggenheim, P. and Martin, J. M., J. Crystal Growth, 211, 230 (2000).Google Scholar
13. Kim, S., Gopalan, V., Kitamura, K. and Furukawa, Y., J. Appl. Phys. 90, 2949 (2001).Google Scholar
14. Gopalan, V., Sanford, N. A., Aust, J. A., Kitamura, K. and Furukawa, Y., “Handbook of Advanced Electronic and Photonic Materials and Devices,” ed‥ Nalwa, H. S., 4, (2001) pp.57114.Google Scholar
15. Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T.E., Appl. Phys. Lett. 72, 3073 (1998).Google Scholar