Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T13:51:39.077Z Has data issue: false hasContentIssue false

Effect of hydrogen plasma treatment on the luminescence and photoconductive properties of ZnO nanowires

Published online by Cambridge University Press:  31 January 2011

Yanbo Li
Affiliation:
semifreeman@gmail.com, The University of Tokyo, Tokyo, Japan
Ryohei Uchino
Affiliation:
uchinou@lelab.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Takero Tokizono
Affiliation:
tokizono@lelab.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Alexander Paulsen
Affiliation:
paulsenalex@gmail.com, The University of Tokyo, Tokyo, Japan
Miao Zhong
Affiliation:
miaozhong@lelab.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Masaki Shuzo
Affiliation:
shuzo@lelab.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Ichiro Yamada
Affiliation:
yamada@t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Jean-Jacques Delaunay
Affiliation:
jean@t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Get access

Abstract

ZnO nanowires with strong green emission synthesized by chemical vapor deposition were treated using hydrogen plasma. The effect of hydrogen plasma treatment was studied by means of photoluminescence and photoconductivity. A strong passivation of the green emission and a significant enhancement of the near band edge emission were found after the hydrogen plasma treatment. The conductivity of the nanowires in dark was increased by more than 3 orders of magnitude. The photoconductivity also increased after the hydrogen plasma treatment. The observed changes in the luminescence and photoconductive properties of the ZnO nanowires were likely caused by hydrogen atoms occupying both oxygen vacancies and interstitial sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2 Morkoç, H. and Özgür, Ü., Oxide, Zinc: Fundamentals, Materials and Device Applications (WILEY-VCH, Weinheim, 2009).Google Scholar
3 Look, D. C., Hemsky, J. W., and Sizelove, J. R., Phys. Rev. Lett. 82, 2552 (1999).Google Scholar
4 Kröger, F. A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1974).Google Scholar
5 Vanheusden, K., Seager, C. H., Warren, W. L., Tallant, D. R., and Voigt, J. A., Appl. Phys. Lett. 68, 403 (1996).Google Scholar
6 Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).Google Scholar
7 Kohan, A. F., Ceder, G., Morgan, D., and Walle, C. G. Van de, Phys. Rev. B 61, 15019 (2000).Google Scholar
8 Walle, C. G. Van de, Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
9 Sekiguchi, T., Ohashi, N., and Terada, Y., Jpn. J. Appl. Phys. 2 36, L289 (1997).Google Scholar
10 Ohashi, N., Ishigaki, T., Okada, N., Taguchi, H., Sakaguchi, I., Hishita, S., Sekiguchi, T., and Haneda, H., J. Appl. Phys. 93, 6386 (2003).Google Scholar
11 Windisch, C. F., Exarhos, G. J., Yao, C. H., and Wang, L. Q., J. Appl. Phys. 101, 123711 (2007).Google Scholar
12 Li, Y. B., Valle, F. Della, Simonnet, M., Yamada, I., and Delaunay, J.-J., Nanotechnology 20, 045501 (2009).Google Scholar
13 Li, Y. B., Valle, F. Della, Simonnet, M., Yamada, I., and Delaunay, J.-J., Appl. Phys. Lett. 94, 023110 (2009).Google Scholar
14 Li, Y. B., Nagatomo, I., Uchino, R., Yamada, I., and Delaunay, J.-J., Mater. Res. Soc. Symp. Proc. 1144, LL1703 (2009).Google Scholar
15 Kang, H. S., Kang, J. S., Kim, J. W., and Lee, S. Y., J. Appl. Phys. 95, 1246 (2004).Google Scholar
16 Dijken, A. van, Meulenkamp, E. A., Vanmaekelbergh, D., and Meijerink, A. J. Lumin. 87-90, 454 (2000).Google Scholar
17 Zimmler, M. A., Stichtenoth, D., Ronning, C., Yi, W., Narayanamurti, V., Voss, T., and Capasso, F., Nano Lett. 8, 1695 (2008).Google Scholar
18 Zimmler, M. A., Bao, J. M., Capasso, F., Müller, S., and Ronning, C., Appl. Phys. Lett. 93, 051101 (2008).Google Scholar