Published online by Cambridge University Press: 31 January 2011
A multiscale finite element model has been developed to study the fracture behaviour of two-dimensional random Voronoi structures. The influence of materials parameters and cellular architecture on the damage initiation and accumulation has been analyzed. The effect of the solid material’s strain hardening, relative density and architectural randomness on the ductility and fracture strength of the cellular solid are investigated. The results suggest materials-design directions in which the heat treatment, the solid material properties, its microstructure and the cellular architecture can be tuned for an optimized performance of cellular materials.