Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:17:09.803Z Has data issue: false hasContentIssue false

Effect of air exposure of MoO3 film underneath thin CuPc layers

Published online by Cambridge University Press:  25 January 2013

Chenggong Wang
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A
Irfan Irfan
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A
Yongli Gao
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A Institute for Super Microstructure and Ultrafast Process, the Central South University, Changsha, Hunan,The People's Republic of China, 410083, P.R.China
Get access

Abstract

Wehave investigatedthe thickness dependence of air exposure of copper phthalocyanine (CuPc) layerson molybdenum trioxide (MoO3) with ultraviolet photoemission spectroscopy (UPS). It was found that after the air exposure, the WF of MoOx dropped severely. Meanwhile, with ∼10 ÅCuPcthin films covered on the top, there is no big change of the MoOx WF before and after the air exposure.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tang, C. W., Appl. Phys. Lett. 48, 183 (1986)CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudi, F., and Heeger, A. J., Science. 270, 1789 (1995)CrossRefGoogle Scholar
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K. and Yang, Y., Nat. Mater. 4, 864 (2005)CrossRefGoogle Scholar
Tokito, S., Noda, N., and Taga, Y., J of Phys D: Appl. Phys. 29, 2750 (1996)CrossRefGoogle Scholar
Wang, F. X., Qiao, F. X., Xiong, T. and Ma, D. G., Org. Electron. 9, 985 (2008)CrossRefGoogle Scholar
Shrotriya, V., Li, G., Yao, Y., Chu, C. W., and Yang, Y., Appl. Phys. Lett. 88, 073508 (2006)CrossRefGoogle Scholar
Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H., and Marks, T. J., Proceedings of the National Academy of Sciences of the United States of America, 105, 2783 (2008)CrossRefGoogle Scholar
Kim, D. Y., Subbiah, J., Franky, S., Ding, H., Irfan, , and Gao, Y., Appl. Phys. Lett, 95, 093304 (2009)CrossRefGoogle ScholarPubMed
Kroger, M., Hamwi, S., Meyer, J., Riedle, T., Riedle, T., Kowalsky, W., and Kahn, A., Appl. Phys. Lett, 95, 123301 (2009)CrossRefGoogle Scholar
Kroger, M., Hamwi, S., Meyer, J., Riedle, T., Riedle, T., Kowalsky, W., and Kahn, A., Org. Electron, 10, 932 (2009)CrossRefGoogle Scholar
Irfan, , Ding, H., Gao, Y., Small, C., Kim, D. Y., Subbiah, J., and So, F., Appl. Phys. Lett, 96, 243307 (2010)CrossRefGoogle Scholar
Irfan, , Zhang, M. L., Ding, H., Tang, C. W., and Gao, Y., Org.Electron, 12, 1588 (2011)CrossRefGoogle Scholar