Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T01:24:43.901Z Has data issue: false hasContentIssue false

Dynamics of Ultrafast Laser Induced Damage in Single Crystal Ni-based Superalloy During Machining

Published online by Cambridge University Press:  26 February 2011

Joel P. McDonald
Affiliation:
jpmcdona@umich.edu, University of Michigan, Applied Physics, B122 Gerstacker Building, 2200 Bonisteel Blvd., Ann Arbor, MI, 48109, United States, 734-647-9498
Shuwei Ma
Affiliation:
mashuwei@umich.edu, University of Michigan, Materials Science and Engineering, Ann Arbor, MI, 48109, United States
John A. Nees
Affiliation:
nees@umich.edu, University of Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI, 48109, United States
Tresa M. Pollock
Affiliation:
tresap@umich.edu, University of Michigan, Materials Science and Engineering, Ann Arbor, MI, 48109, United States
Steven M. Yalisove
Affiliation:
smy@umich.edu, University of Michigan, Materials Science and Engineering, Ann Arbor, MI, 48109, United States
Get access

Abstract

Pump-probe imaging of femtosecond pulsed laser ablation was performed to investigate the mechanical shock induced on an intermetallic superalloy CMSX-4 during femtosecond laser machining. Time resolved shadowgraphic images were collected of the shock wave produced in the air above the target following laser exposure (0-10.3 nanoseconds). The dimensions of the shock wave were measured as a function of delay time and laser fluence (1.27 J/cm2 - 62.8 J/cm2). Time-resolved shadowgraphic images of the ablation event will be presented, and the corresponding damage morphology as a function of incident laser fluence will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Perry, M. D., Stuart, B. C., Banks, P. S., Feit, M. D., Yanovsky, V., Rubenchik, A. M., J. Appl. Phys. 85, 6803 (1999).Google Scholar
[2] Harzic, R. Le, Huot, N., Audouard, E., Jonin, C., Laporte, P., Valette, S., Fraczkiewicz, A., Fortunier, R., Appl. Phys. Lett. 80, 3886 (2002).Google Scholar
[3] Valette, S., Audouard, E., Harzix, R. Le, Huot, N., Laporte, P., Fortunier, R., Appl. Surf. Sci. 239, 381 (2005).Google Scholar
[4] Joglekar, A. P., Liu, H., Spooner, G. J., Meyhofer, E., Mourou, G., Hunt, A. J., Appl. Phys. B 77, 25, (2003).Google Scholar
[5] Klein-Wiele, J. H., Bekesi, J., Simon, P., Appl. Phys. A 79, 775 (2004).Google Scholar
[6] Momma, C., Chichkov, B. N., Nolte, S., von Alvensleben, F., Tunnermann, A., Welling, H., Wellegehausen, B., Optics Communications 129, 134 (1996).Google Scholar
[7] Kamlage, G., Bauer, T., Ostendorf, A., Chichkov, B. N., Appl. Phys. A 77, 307 (2003).Google Scholar
[8] Dittrich, Ph., Bartlome, R., Montemezzani, G., Gunter, P., Appl. Surf. Sci. 220, 88 (2003).Google Scholar
[9] Perrie, W., Gill, M., Robinson, G., Fox, P., O'Neill, W., Appl. Surf. Sci. 230, 50 (2004).Google Scholar
[10] Feng, Q., Picard, Y. N., Liu, H., Yalisove, S. M., Mourou, G., Pollock, T. M., Scripta Materiala 53, 511 (2005).Google Scholar
[11] Hohlfeld, J., Wellershoff, S. S., Gudde, J., Conrad, U., Jahnke, V., Matthias, E., Chem. Phys. 251, 237 (2000).Google Scholar
[12] Othonos, A., J. of Appl. Phys. 83, 1789 (1998).Google Scholar
[13] Gale, G. M., Gallot, G., Hache, F., Lascoux, N., Bratos, S., J-Cl. Leicknam, Phys. Rev. Lett. 82, 1068 (1999).Google Scholar
[14] Downer, M. C., Fork, R. L., Shank, C. V., J. Optical Soc. of Amer. 2, 595 (1985).Google Scholar
[15] Choi, T. Y., Grigoropoulos, C. P., J. of Appl. Phys. 92, 4918 (2002).Google Scholar
[16] Zeng, X., Mao, X. L., Greif, R., Russo, R. E., Appl. Phys. A 80, 237 (2005).Google Scholar
[17] Born, M., Wolf, E., Principles of Optics, 7th edition, Cambridge University Press, 483 (1999).Google Scholar
[18] Murray, T. W., Wagner, J. W., J. Appl. Phys. 85, 2031 (1999).Google Scholar
[19] Mannion, P. T., Magee, J., Coyne, E., O'Connor, G. M., Glynn, T. J., Appl. Surf. Sci. 223, 275 (2004).Google Scholar
[20] Nolte, S., Momma, C., Jacobs, H., Tunnermann, A., Chichkov, B. N., Wellegehausen, B., Welling, H., J. Opt. Soc. Am. B 14, 2716 (1997).Google Scholar
[21] Sedov, L. I., Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959).Google Scholar