Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T04:33:54.216Z Has data issue: false hasContentIssue false

Diffusion of Hard Coatings on Ductile Cast Iron

Published online by Cambridge University Press:  20 December 2012

N. López Perrusquia*
Affiliation:
Instituto Politécnico Nacional, SEPI-ESIME, U. P. Adolfo López Mateos, Zacatenco, 07738, México.
M. Antonio Doñu Ruiz
Affiliation:
Instituto Politécnico Nacional, SEPI-ESIME, U. P. Adolfo López Mateos, Zacatenco, 07738, México.
E. Y. Vargas Oliva
Affiliation:
Universidad Politécnica del Valle de México, Grupo Ciencia e Ingeniería de Materiales, 54910, Tultitlán, Estado de México
V. Cortez Suarez
Affiliation:
Universidad Autónoma Metropolitana Unidad Azcapotzalco, México.
*
Get access

Abstract

This work estimate the growth kinetics of Fe2B coatings created on surface nodular cast iron ASTM A-536 class 80-56-06. The Fe2B coatings were formed by power packaging boriding process, considering three temperatures and exposure times different treatment. The hard coatings were evaluated through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The model of diffusion employs the mass balance equation at the (Fe2B/substrate) interface to evaluate the boron diffusion coefficient in the Fe2B coating DFe2B, an expression of the parabolic growth constant, the instantaneous velocity of the Fe2B/substrate interface, and the weight gain in the boriding sample were establish as a function of the parameter ε(T) and η(T), dependents of boriding process in function of the temperature related and the time of boriding t0 (T), respectively in the Fe2B coating. Model validation was extended considering the treatment of 1273 and 1123 K for 10 h respectively, obtaining a good correlation with experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sinha, A. K., “Boronizing”, ASM Handbook, OH, USA, Journal Heat Treat. 4, (1991), p. 437447.Google Scholar
Graf Von Matuschka, A., “Boronizing”, First ed., Carl Hanser Verlag, Germany, (1980), p. 3140.Google Scholar
Davis, J. R., “Surface hardening of steels: understanding the basics”, first ed.ASM International, USA, (2002) p. 213215.Google Scholar
Keddam, Mourad et al. . Solid Comp. of Trans. Elem. 170, 185189 (2011).Google Scholar
Massalski, T. B., Binary alloy phase diagrams. I and II, 4821273 (1986).Google Scholar
Van Rompaey, T., Hari Kumar, K. C., Wollants, P., J. Alloys Compd. 334, 173181(2002).CrossRefGoogle Scholar
Yu, L.G., Chen, X.J., Khor, K.A., Sundararajan, G., Acta Mater, 53, 23612368 (2005).CrossRefGoogle Scholar
Somers, M. A.J., Mittemeijer, E. J., Metall. Trans. A, 26, 5774 (1995).CrossRefGoogle Scholar
Keddam, Mourad, Defect and Diffusion Forum, 269, 297301 (2010).Google Scholar
Hallemans, B., Wouants, P., and Roos, J.R., Z. Metallkd, 85, 10 676682 (1994).Google Scholar
Okamoto, H., J. Phase Equil. Diffusion, 25, 297298 (2004).CrossRefGoogle Scholar
Ortiz-Domínguez, M., Hernández-Sánchez, E., Martínez-Trinidad, J., Keddam, M., Campos, I., Kovove Mater. 48, 285290 (2010).Google Scholar