Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:13:23.404Z Has data issue: false hasContentIssue false

Diffuse Neutron Scattering from Surfaces and Interfaces

Published online by Cambridge University Press:  22 February 2011

Sunil K. Sinha*
Affiliation:
Corporate Research Laboratories, Exxon Research & Engineering Company, Annandale, New Jersey 08801 USA
Get access

Abstract

The use of neutron scattering as a tool for exploring surfaces and interfaces has become more prevalent over the last several years, mainly due to the increasing popularity of reflectivity techniques, which study specular reflection from single surfaces or multilayers. Due to intensity limitations, the use of off-specular or grazing-incidence neutron scattering techniques has been much less prevalent. In this paper we shall discuss the origins of magnetic off-specular scattering (e.g., as observed in magnetic multilayers) and the origins of anomalies seen in the X-ray or neutron diffuse scattering from multilayers near Bragg reflections in terms of the Dynamical Theory of Scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Felcher, G. P. and Russell, T. P., Eds., Methods of Analysis and Interpretation of Neutron Reflectivity Data. Physica B 173 (1&2) 1210 (North-Holland, 1991).Google Scholar
2 Russell, T. P., Mater. Sci. Reports 5 (1990).Google Scholar
3 Jones, R. A. L., Norton, L. J., Shull, K. R., Kramer, E. J., Felcher, G. P., Karim, A., and Fetters, L. J., Macromolecules 25, 2359 (1992).Google Scholar
4 Felcher, G. P. in Thin Film Neutron Optical Devices: Mirrors. Supermirrors. Multilayer Monochromators. Polarizers and Beam Guides. Ed., Majkrzak, C. F., Technical Publ. Vol. 983 (SPIE, International Society for Optical Engineering, 1989).Google Scholar
5 Majkrzak, C. F., Physica B 173, 75 (1991) and these Proceedings.Google Scholar
6 Takeda, M., et al. , J. Phys. Soc. Japan 62, 3015 (1993); M. Takeda, Y. Endoh, A.. Kamijo, and J. Mizuki, Proc. International Conference on Neutron Scattering, ICNS '94 (North-Holland), to be published.Google Scholar
7 Felcher, G. P., et al. , Phys. Rev. B50, 9565 (1994); G. P. Felcher, Neutron News 5, 18(1994).Google Scholar
8 Pynn, R., Phys. Rev. B 46, 7953 (1992).Google Scholar
9 Wu, W., J. Chem. Phys. 98, 1687 (1993); 101, 4198 (1994).Google Scholar
10 Hahn, W., Loewenhaupt, M., Felcher, G. P., Huang, Y. Y., and Parkin, S. S. P., J. Appl. Phys. 75, 3564 (1994).Google Scholar
11 Lovesey, S. W., Theory of Neutron Scattering from Condensed Matter. Vol. 2, Clarendon Press, Oxford (1986).Google Scholar
12 Sinha, S. K., Sirota, E. B., Garoff, S., and Stanley, H. B., Phys. Rev. B 38, 2297 (1988).Google Scholar
13 Wong, P. Z. and Bray, A., Phys. Rev. B 37, 7751 (1988).Google Scholar
14 Daillant, J. and Belorgey, O., J. Chem. Phys. 97, 5824 (1992).Google Scholar
15 Sinha, S. K., J. Physique III France 4, 1543 (1994).Google Scholar
16 Sinha, S. K., Physica B 173, 25 (1993).Google Scholar
17 Kortwright, J. B., J. Appl. Phys. 70, 3620 (1991).Google Scholar
18 Savage, D. E., et al. , J. Appl. Phys. 69, 1411 (1991); 71, 3283 (1992); Y. H. Phang, et al., J. Appl. Phys. 74, 3181 (1993).Google Scholar
19 Sinha, S. K., et al. , Physica B 198, 72 (1994).Google Scholar
20 Holy', V., et al. , Phys. Rev. B 47, 15896 (1993); G. T. Baumbach, et al., Physica B 198. 249 (1994VGoogle Scholar
21 Jiang, X., Metzger, T. H., and Peisl, J., Appl. Phys. Lett. 61, 904 (1994).Google Scholar
22 Yoneda, Y., Phys. Rev. 131, 2010 (1963).Google Scholar
23 Fullerton, E. B., et al. , Phys. Rev. B 48, 17432 (1993) and E. B. Fullerton, S. K. Sinha, and X. Z. Wu, to be published.Google Scholar