Published online by Cambridge University Press: 02 September 2013
Concentration- and layer-dependent percolation thresholds can be determined for carbon nanotube (CNT) films deposited from aqueous dispersions on paper substrates at both the surface of the deposited film (in-plane) and through the thickness of the paper (thru-plane) using impedance spectroscopy. By analyzing the impedance spectra as a function of the number of layers (solution concentration is constant) or the solution concentration (number of layers is constant), the electrical properties and percolation thresholds for CNT-paper composites can be determined. In-plane measurements show that percolation occurs at 4 layers when 1 mg/mL solution concentration is used. In the thru-plane direction, the films are already percolated at 1 mg/mL concentration, which is confirmed by varying the concentration of the solution used to deposit 1 layer films. A second percolation event happens between 8 and 12 layers due to an increased number of interconnections of CNTs within the paper substrate. The lowest sheet resistance achieved was 100 Ω/□.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.