Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T19:10:35.034Z Has data issue: false hasContentIssue false

Cyclic Deformation and Fatigue Properties of Ultrafine Grain Size Materials: Current Status and Some Criteria for Improvement of the Fatigue Resistance

Published online by Cambridge University Press:  14 March 2011

Haël Mughrabi
Affiliation:
Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg D-91058 Erlangen, Germany
Heinz Werner Höppel
Affiliation:
Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg D-91058 Erlangen, Germany
Get access

Abstract

In this review, some general conclusions based on studies performed to date on fatigued materials of ultrafine grain (UFG) size produced by equal channel angular pressing (ECAP) are drawn, and open issues of current interest are defined. Important aspects addressed include the apparent discrepancy between improved fatigue strengths in Wöhler (S-N) plots as opposed to inferior fatigue strengths in Manson-Coffin plots, the clarification of the microstructural mechanisms of severe cyclic softening in conjunction with dynamic (local) grain/subgrain coarsening and damaging large-scale catastrophic shear banding. The important roles of the cyclic slip mode, the friction stress, the crystal structure and the temperature of cyclic deformation with respect to stable cyclic deformation behaviour are emphasized. Based on such considerations, criteria are formulated that must be observed, when designing ECAP-processed UFG-materials of superior fatigue strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowe, T.C. and Valiev, R.Z., eds., Investigations and Applications of Severe Plastic Deformation, (Kluwer Academic Publishers, 2000).Google Scholar
2. Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V., Progr. in Mater. Sci., 45, 103 (2000).Google Scholar
3. Mughrabi, H., in Investigations and Applications of Severe Plastic Deformation, eds. Lowe, T.C. and Valiev, R.Z. (Kluwer Academic Publishers, 2000) p. 241.Google Scholar
4. Thompson, A.W. and Backofen, W.A., Acta metall., 19, 597 (1971).Google Scholar
5. Vinogradov, A., Kaneko, Y., Kitagawa, K., Hashimoto, S. and Valiev, R., Mater. Sci. Forum, 269–272, 987 (1998).Google Scholar
6. Hashimoto, S., Kaneko, Y., Kitagawa, K., Vinogradov, A. and Valiev, R.Z., Mater. Sci. Forum, 312–314, 593 (1999).Google Scholar
7. Agnew, S.R. and Weertman, J.R., Mater. Sci. Eng. A, 244, 145 (1998).Google Scholar
8. Agnew, S.R., Vinogradov, A. Yu., Hashimoto, S. and Weertman, J.R., J. Electron. Mater., 28, 1038 (1999).Google Scholar
9. Brunnbauer, M., Diplomarbeit, Dauerschwingverhalten und Schädigung von ultrafeinkä rnigen (UFG) Kupfervielkristallen, Universität Erlangen-Nürnberg (1999).Google Scholar
10. Höppel, H.W., Brunnbauer, M., Mughrabi, H., Valiev, R.Z. and Zhilyaev, A., in Proc. of Materialsweek 2000, Munich, WILEY-VCH, in press, and unpublished work.Google Scholar
11. Falkner, M., Diplomarbeit, Zyklische Verfestigung und Ermüdungslebensdauer unterschiedlicher metallischer Werkstoffe bei Temperaturen zwischen –100° C und +150 °C, Universität Erlangen-Nürnberg (1997).Google Scholar
12. Wang, R., Doctorate Thesis, Untersuchungen der mikroskopischen Vorgänge bei der Wechselverformung von Kupferein- und -vielkristallen, Universitä t Stuttgart (1982).Google Scholar
13. Mughrabi, H. and Wang, R., in Basic Mechanisms in Fatigue, eds. Lukáš, P. and Polák, J. (Academia, Prague, and Elsevier Science Publ. Co., 1988) p. 1.Google Scholar
14. Vinogradov, A., Nagasaki, S., Patlan, V., Kitagawa, K. and Kawazoe, M., Nanostruc. Mater., 11, 925 (1999).Google Scholar
15. Lukáš, P. and Kunz, L., Mater. Sci. Eng., 85, 67 (1987).Google Scholar
16. Thiele, E., Bretschneider, J., Hollang, L., Schell, N. and Holste, C., in Investigations and Applications of Severe Plastic Deformation, eds. Lowe, T.C. and Valiev, R.Z. (Kluwer Academic Publishers, 2000) p. 173, and unpublished results.Google Scholar
17. Patlan, V., Vinogradov, A., Higashi, K. and Kitagawa, K., Mater. Sci. Eng. A, in press.Google Scholar
18. Vinogradov, A. Yu., Stolyarov, V.V., Hashimoto, S. and Valiev, R.Z., submitted to Acta mater.Google Scholar
19. Vinogradov, A. Yu., personal communication (2000).Google Scholar
20. Essmann, U. and Mughrabi, H., Phil. Mag. A, 40, 731 (1979).Google Scholar
21. Feltner, C.E. and Laird, C., Acta metall., 15, 1631 (1967 and 15, 1633 (1967).Google Scholar
22. Witney, A.B., Sanders, P.G., Weertman, J.R. and Eastman, J.A., Scripta metall., 33, 2025 (1995).Google Scholar
23. Langdon, T.G. and Gifkins, R.C., Scripta metall., 13, 1191 (1979).Google Scholar
24. Raman, V. and Langdon, T.G., J. Mater. Sci. Letters, 2, 180 (1983).Google Scholar
25. Weiss, S., Ponge, D. and Gottstein, G., Can. Metall. Quart., 34, 237 (1995).Google Scholar
26. Weiss, S. and Gottstein, G., Mater.Sci. Tech., 14, 1169 (1998).Google Scholar
27. Polák, J., Czech J. Phys. B, 19, 315 (1969).Google Scholar
28. Essmann, U., Goesele, U. and Mughrabi, H., Phil. Mag. A, 44, 405 (1981).Google Scholar
29. Estrin, Y., Gottstein, G., Rabkin, E. and Shvindlerman, L.S., Scripta mater., in press.Google Scholar