Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T02:46:24.913Z Has data issue: false hasContentIssue false

Crystalline Alignment and In-plane Texture Improvement of Buffer Layers Deposited on NiW Tapes

Published online by Cambridge University Press:  10 March 2011

Linfei Liu
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Yijie Li
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Huaran Liu
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Xiaokun Song
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Dan Hong
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Ying Wang
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Da Xu
Affiliation:
Department of Physics, Shanghai Jiao Tong University, Shanghai, Shanghai, China
Get access

Abstract

In order to deposit YBCO coated conductor with high critical current densities on rolling assisted biaxially textured Ni-W tapes, this paper has systematically studied the influence of deposition conditions on the orientation, in-plane texture and surface morphology of buffers and superconducting layers. It was found that the crystalline alignment and the in-plane texture of cerium oxide cap-layers were well improved by optimizing deposition parameters. The full width at half maximum of phi-scan x-ray diffraction peaks were reduced from original values of 7-8 degrees to 5-6 degrees. A high critical current density of 4.6×106 A/cm2 has been achieved on optimized buffer layers. This value is comparable with the critical current density of YBCO thin films deposited on single crystalline substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Foltyn, S.R., Arendt, P.N., Jia, Q.X., Wang, H., MacManus-Driscoll, J.L., Kreiskott, S., DePaula, R.F., Stan, L., Groves, J.R., Dowden, P.C., Appl. Phys. Lett. 82(25), 45194521 (2003).Google Scholar
2. Malozemoff, A.P., Verebelyi, D.T., Fleshler, S., Aized, D., Yu, D., Physica C 386, 424430 (2003).Google Scholar
3. Iijima, Y., Tanabe, N., Kohno, O., Ikeno, Y., Appl. Phys.Lett. 60, 769771 (1992).Google Scholar
4. Bauer, M., Semerad, R., Kinder, H., IEEE Trans. Appl. Supercond. 9, 15021505 (1999).Google Scholar
5. Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., Sikka, V.K., Appl. Phys. Lett. 69, 17951797 (1996).Google Scholar
6. Cole, B.F., Liang, G.C., Newman, N., Char, K., Zaharchuk, G., Martens, J.S., Appl. Phys. Lett. 61, 17271729 (1992).Google Scholar
7. Wu, X.D., Dye, R.C., Muenchausen, R.E., Foltyn, S.R., Maley, M., Rollett, A.D., Garcia, A.R., Nogar, N.S., Appl. Phys. Lett. 58, 21652169 (1991).Google Scholar
8. Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., List, F.A., Science 274, 755757 (1996).Google Scholar
9. Shi, D.Q., Yang, B.C., Wang, X.P., Peng, Z.S., Wang, X.H., Hao, J.M., Wang, L., Wen, Y.L., Rare Met. 14, 6770 (1995).Google Scholar
10. Lorenz, M., Hochmuth, H., Natusch, D., Borner, H., Lippold, G., Kreher, K., Schmitz, W., Appl. Phys. Lett. 68, 33323334 (1996).Google Scholar
11. Xiong, X., Winkler, D., Physica C 336, 7074 (2000).Google Scholar
12. Linfei, Liu, Yijie, Li, Zuncheng, Zhao, Huaran, Liu, Applied Surface Science 257, 12571262 (2010).Google Scholar