No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
The influence of the ionic size of the lanthanides R on melting relations of Ba2RCu3O6+x, where R=Y, Eu and Nd, was studied and compared with that of a high Tc superconductor mixed‐lanthanide phase Ba2(Y.75Eu.125Nd 125)Cu3O6+xThese materials have been characterized by a variety of methods including differential thermogravimetric analysis (DTA), scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and X‐ray powder diffraction. Single phase samples of Ba2(Y.75Eu.125Nd.125)Cu3O6+x were annealed at 1004, 1040, 1052, 1060, 1078, 1107 and 1160°C and quenched into a helium gas container cooled by liquid nitrogen. The SEM micrographs of these samples showed the progressive chnages in features of the microstructures from sintering and grain growth through melting and then recrystallization from the melt. The addition of the SEM technique in conjunction with X‐ray diffraction has been helpful in the study of phase equilibria in this system.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.