Published online by Cambridge University Press: 01 February 2011
During long-term interim storage of spent fuel, pre-oxidation of the UO2-matrix may not be ruled out completely. This can happen if air could find access to the fuel in the case of cladding failure. The aim of this work is to study the impact of pre-oxidation of the fuel surface on the UO2 matrix dissolution rate and the associated mobilization or retention of radionuclides in highly concentrated salt solutions. The tests were performed with samples that suffered pre-oxidation during up to seven years. The dissolution rate of a fuel sample contacted by small quantities of air-oxygen was found to be roughly a factor of 10 higher in comparison to non oxidized samples, but concentrations of radionuclides, especially Pu and U were hardly affected. The majority of dissolved radionuclides, especially Pu, U appear to have been reimmobilized on the fuel sample itself.