Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T02:58:24.577Z Has data issue: false hasContentIssue false

Control of the Mesoscopic Organization of Conjugated Thiophene Oligomers, Induced by Self-Assembly Properties

Published online by Cambridge University Press:  16 February 2011

Francis Garnier
Affiliation:
Laboratoire des MatéRiaux MoléCulaires, CNRS, 2 Rue Dunant 94320 Thiais, France
A. Yassar
Affiliation:
Laboratoire des MatéRiaux MoléCulaires, CNRS, 2 Rue Dunant 94320 Thiais, France
R. Hajlaoui
Affiliation:
Laboratoire des MatéRiaux MoléCulaires, CNRS, 2 Rue Dunant 94320 Thiais, France
G. Horowitz
Affiliation:
Laboratoire des MatéRiaux MoléCulaires, CNRS, 2 Rue Dunant 94320 Thiais, France
F. Deloffre
Affiliation:
Laboratoire des MatéRiaux MoléCulaires, CNRS, 2 Rue Dunant 94320 Thiais, France
Get access

Abstract

Conjugated oligomers form a fascinating class of molecular semiconductors, which open the perspective of control of electronic and structural properties through the variation of their chemical structure. For analysing the correlation between charge transport and structural properties, sexithiophene, 6T, was substituted by hexyl groups, both on the terminal α positions (α,ωDH6T) and as pendant groups in β position (β,β′DH6T). Structural characterizations by X-ray diffraction show that vacuum evaporated thin films of 6T and α,ωDH6T consist of layered structure in a monoclinic arrangement, with all-planar Molecules standing on the substrate, and that a much longer range ordering is observed when passing from 6T to α,ωDH6T, evidencing a large increase of molecular organization at the mesoscopic level. Electrical characterizations also indicate a significant enhancement of anisotropy of conductivity, with a ratio of 120 in favor of the conductivity along the stacking axis for α,ωDH6T. The charge carrier mobility, measured on field-effect transistors fabricated from these conjugated oligomers, also shows a large increase by a factor of 25 when passing from 6T to α,ωDH6T, and reaches a value close to 10-1cm2V-1s-1. In contrast, ββ′DH6T presents very low conductivity and mobility. These observations are attributed to the self-assembly properties brought by alkyl groups in α,ω position, and confirm the large potential of molecular engineering of organic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J.H., Jones, C.A. and Friend, R.H., Nature, 335, 137 (1988).CrossRefGoogle Scholar
2. Assadi, A., Svensson, C., Willander, M. and Inganäs, O., Appl. Phys. Lett., 53, 195 (1988).CrossRefGoogle Scholar
3. Paloheimo, J., Kuivalainen, P., Stubb, H., Vuorimaa, E. and Yli-Lahti, P., Appl. Phys. Lett., 56, 1157 (1990).CrossRefGoogle Scholar
4. Horowitz, G., Fichou, D., Peng, X., Xu, Z. and Gamier, F., Solid State Commun., 72, 381 (1989).CrossRefGoogle Scholar
5. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burn, P.L. and Holmes, A.B., Nature, 47, 539 (1990).CrossRefGoogle Scholar
6. Braun, D. and Heeger, A.J., Appl. Phys. Lett., 58, 1982 (1991).CrossRefGoogle Scholar
7. Ohmori, Y., Uchida, M., Muro, K. and Yoshino, K., Jap. J. Appl. Phys., 30, 1941 (1991).CrossRefGoogle Scholar
8. Grem, G., Leditzky, G., Ullrich, B. and Leising, G., Adv. Mater., 4, 36 (1992).CrossRefGoogle Scholar
9. Brown, A.R., Greenham, N.C., Burroughes, J.R., Bradley, D.D.C., Friend, R.H., Burn, P.L., Kraft, A., and Holmes, A.B., Chem Phys. Lett., 200, 46 (1992).CrossRefGoogle Scholar
10. Gamier, F., Horowitz, G., Peng, X. and Fichou, D., Adv. Mater., 2, 592 (1990).Google Scholar
11. Fichou, D., Horowitz, G., Xu, B. and Gamier, F., Synth. Met., 39, 243 (1990).CrossRefGoogle Scholar
12. Delabouglise, D., Hmyene, M., Horowitz, G., Yassar, A. and Gamier, F., Adv. Mater., 4, 107 (1992).CrossRefGoogle Scholar
13. Flendler, J.H., Membrane Mimetic Chemistry, (J. Wiley & Sons, New York), 1982.Google Scholar
14. Servet, B., Ries, S., Trotel, M., Alnot, P., Horowitz, G. and Gamier, F., Adv. Mater., 5, 461 (1993).CrossRefGoogle Scholar
15. Gavezotti, A. and Filippini, G., Synth. Met., 40, 257 (1991).CrossRefGoogle Scholar
16. Van Bolhuis, F., Wynberg, H., Havinga, E.E., Meijer, E.W. and Staring, E.G., Synth. Met., 30, 381 (1989).CrossRefGoogle Scholar
17. Hotta, S. and Waragai, K., J. Mater. Chem., 1, 835 (1991).CrossRefGoogle Scholar
18. Mo, Z;, Lee, K.-B, Moon, Y.B., Kobayashi, M., Heeger, A.J. and Wudl, F., Macromolecules, 18, 1972 (1985).CrossRefGoogle Scholar
19. Tanford, C., Science, 200, 1012 (1978).CrossRefGoogle Scholar
20. Pauling, L., The Nature of the Chemical Bond, 3d Edit. (Cornell University Press, New York, 1962).Google Scholar
21. Warta, W. and Karl, N., Phys. Rev. B, 32, 1172 (1985).CrossRefGoogle Scholar
22. Sze, S.M., Phvsics of Semiconductor Devices, 2nd Edit. (John Wiley, New York, 1981).Google Scholar
23. Waragai, K., Akimichi, H., Hotta, S., Kano, H. and Saraki, H., ICSM Symposium Göteborg, August 1992, Synth. Met., 57, 4053 (1993).Google Scholar