No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Computational modeling techniques have been used to investigate the interaction of arsenate with the dolomite (211) surface. The suitability of a variety of techniques has been assessed in the context of their applicability to the problem, in order to determine the least computationally expensive method of modeling the mineral-solution interface. To this end, various methods of solvating arsenate have been investigated, and a reliable solvation energy has been determined for the molecule. The adsorption geometry of the primary arsenate ion at the dolomite surface has been determined under vacuum conditions. Additionally, solvation of the dolomite surface has studied using molecular dynamics, and results show that there is some layering 2Å above the surface, and that dissociation of the water molecules occurs in this layer.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.