Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:57:12.321Z Has data issue: false hasContentIssue false

Composition dependent doping and transport properties of CuGaSe2

Published online by Cambridge University Press:  21 March 2011

Susanne Siebentritt
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
Andreas Gerhard
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
Stephan Brehme
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
Martha Ch. Lux-Steiner
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
Get access

Abstract

Chalcopyrites are doped by intrinsic defects, therefore their doping behavior depends on their composition. The doping and transport properties of epitaxial CuGaSe2 layers prepared under varying Cu excess have been investigated by temperature dependent Hall effect and conductivity measurements. Two acceptors, 134 meV and 80 meV deep, and a high degree of compensation, increasing with decreasing Cu excess, are found. The temperature dependence of the mobility indicates scattering with phonons, demonstrating high quality material. Defect scattering dominates at lower temperatures for CuGaSe2 grown under moderate Cu excess. CuGaSe2 grown under little or no Cu excess shows transport in a defect band at lower temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mikkelsen, J. C. Jr, J. Electronic Materials 10 (3), 541 (1981).Google Scholar
[2] Bauknecht, A., Siebentritt, S., Albert, J., and Lux-Steiner, M. C., J. Appl. Phys. 89, in press (2001).Google Scholar
[3] Susaki, M., Miyauchi, T., Horinaka, H., and Yamamoto, N., Jpn. J. Appl. Phys. 17 (9), 1555 (1978).Google Scholar
[4] Schön, J. H., Schenker, O., Riazi-Nejad, H., Friemelt, K., Kloc, C., and Bucher, E., phys. stat. sol. a 161, 301 (1997).Google Scholar
[5] Schön, J. H., Fess, K., Friemelt, K., Kloc, C., and Bucher, E., Inst. Phys. Conf. Ser. 152, 59 (1997).Google Scholar
[6] Yamada, A., Fons, P., Niki, S., Shibata, H., Obara, A., Makita, Y., and Oyanagi, H., J. Appl. Phys. 81 (6), 2794 (1997).Google Scholar
[7] Bauknecht, A., Blieske, U., Kampschulte, T. et al., presented at the 2nd World Conference and Exhibiton on Photovoltaic Solar Energy Conversion, Vienna, 1998, p. 2436.Google Scholar
[8] Bauknecht, A., Blieske, U., Kampschulte, T., Bruns, J., Diesner, K., Tomm, Y., Chichibu, S., and Lux-Steiner, M.-C., Inst. Phys. Conf. Ser. 152, 269 (1998).Google Scholar
[9] Siebentritt, S., Bauknecht, A., Gerhard, A., Fiedeler, U., Kampschulte, T., Schuler, S., Harneit, W., Brehme, S., Albert, J., and Lux-Steiner, M. C., Solar Energy Mat. Solar Cells 67, 129 (2001).Google Scholar
[10] Gerhard, A., Harneit, W., Brehme, S., Bauknecht, A., Fiedeler, U., Lux-Steiner, M.-C., and Siebentritt, S., Thin Solid Films 387, 67 (2001).Google Scholar
[11] Ridley, B. K., “Quantum processes in semiconductors” (Oxford University Press, Oxford, 1993), pp. 238241.Google Scholar
[12] Shklovskii, B. I. and Efros, A. L., “Electronic Properties of Doped Semiconductors” (Springer-Verlag, Berlin, 1984), pp. 7582.Google Scholar