Published online by Cambridge University Press: 26 February 2011
Ti+ ions were implanted to high fluences (up to 5 × 1017 /cm2 ) into Si3N4 substrates heated to around 900°C. Composition vs depth profiles were obtained by RBS (in conjunction with RUMP analysis) and microstructures were examined by TEM. At a fluence of 4 × 1017 /cm2, the Si concentration was considerably reduced at the Ti peak depth but enriched near the surface. By 5 × 1017 /cm2, Si was nearly depleted from the implanted layer, leaving a Ti-rich nitride layer merging continuously into Si3N4. TEN detected TiN precipitates up to several pm in diameter, and coherent with Si3N4 crystallites. A Si-Ti-N ternary phase diagram is used to interpret the observed solid state reactions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.