Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T19:08:25.701Z Has data issue: false hasContentIssue false

Complex Geometry and Electric Double Layers

Published online by Cambridge University Press:  25 February 2011

Bertrand Duplantier*
Affiliation:
Service de Physique Thétidle;orique† de Saclay, CE-Saclay, 91191 Gif-sur-Yvette Cedex, France and The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637
Get access

Abstract

The properties of electric double layers near curved surfaces of arbitrary shape and genus are obtained exactly within the Debye-Hückel theory by means of multiple-scattering expansion. For smooth membranes, geometric and topological feature of the electrostatic free energy then emerge through convergent expansions in inverse powers of the principal radii of curvature. Some consequences for the electrostatic stability of various membrane shapes are considered. We also study the effects of surface singularities, e.g., wedges, on the thermodynamics of electric double layers near a rough colloid. Each wedge yields an additive contribution to the free energy that is a functionof the angle. A probabilistic Brownian representation of is given, which is entirely similar to that of vibration eigenmodes given by M. Kac long ago in “Canone hear the shape of a drum?” [Amer. Math. Monthly 73S, 1 (1966)]. The analysis yields a universal scaling law for the free energy of a rough colloid with its fractal Minkowski dimension.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Verwey, E.J.W. and Overbeek, J.Th.G., “Theory of the stability of lyophobic colloids” (Elsevier, Amsterdam, 1948). R.J. Hunter, “Foundations of Colloid Science” (Clarendon, Oxford, 1987). W.B. Russel, D.A. Saville, W.R. Schowalter, “Colloidal Dispersions” (Cambridge University Press, Cambridge, 1989).Google Scholar
[2] Israelachvili, J.N., “Intermolecular and surface forces (Academic, London, 1985).Google Scholar
[3] Gouy, G., J. Phys. Radium 9, 457 (1910).Google Scholar
[4] Chapman, D.L., Phil. Mag. 25 (6), 475 (1913).Google Scholar
[5] Mitchell, D.J. and Ninham, B.W., Langmuir 5, 1121 (1989); H.N.W. Lekkerkerker Physica A167, 384 (1990); M. Kiometzis and H. Kleinert, Phys. Lett. A140, 520 (1989).Google Scholar
[6] Pincus, P., Joanny, J.F., and Andelman, D., Europhys. Lett. 11, 763 (1990); A. Fogden and B.W. Ninham, Langmuir 7, 590 (1991).Google Scholar
[7] Winterhalter, M. and Helfrich, W., J. Phys. Chem. 92, 6865 (1988).Google Scholar
[8] Bensimon, D., David, F., Leibler, S., and Pumir, A. J. Phys. (Paris) 51, 689 (1990); R.E. Goldstein, A. Pesci, and V. Romero-Rochin, Phys. Rev. A 41, 5504 (1990).Google Scholar
[9] Duplantier, B., Goldstein, R.E., Pesci, A., and Romero-Rochin, V., Phys. Rev. Lett. 65, 508 (1990); B Duplantier, Physica A168, 179 (1990).Google Scholar
[10] Balian, R. and Bloch, C., Ann. Phys. (N.Y.) 60, 401 (1970); 84, 559 (1974).Google Scholar
[11] Balian, R. and Duplantier, B., Ann. Phys. (N.Y.) 104, 300 (1977).CrossRefGoogle Scholar
[12] Casimir, H.B.G., Proc. Kon. Nederl. Akad. Wet. B51, 793 (1948).Google Scholar
[13] Balian, R. and Duplantier, B., Ann. Phys. (N.Y.) 112, 165 (1978).CrossRefGoogle Scholar
[14] Kac, M., Am. Math. Montly 73S, 1 (1966).CrossRefGoogle Scholar
[15] Fisher, M.E., J. Comb. Th. 1, 105 (1966).Google Scholar
[16] Duplantier, B., Phys. Rev. Lett. 66, 1555 (1991).Google Scholar
[17] Goldstein, R.E., Halsey, T.C., and Leibig, M., Phys. Rev. Lett. 66, 1551 (1991).Google Scholar
[18] Berry, M.V., “Structural Stability in Physics”, Giittinger, W. and Eikemeir, H. eds., Springer 51, (1979).Google Scholar
[19] Brossard, J. and Carmona, R., Comm. Math. Phys. 104, 103 (1986); M.L. Lapidus and J. Fleckinger, C.R. Acad. Sci. Paris 306 I, 171 (1988).Google Scholar
[20] Sapoval, B., Gobron, Th. and Marjolina, A., Phys. Rev. Lett. 67, 2974 (1991).CrossRefGoogle Scholar
[21] McCartney, L.N. and Levine, S., J. Colloid Interface Sci. 30, 345 (1969).CrossRefGoogle Scholar
[22] Duplantier, B., in “Dynamical Phenomena at Interfaces, Surfaces and Membranes”, Les Houches Winter School 1991, Eds. Boccara, N., Beysens, D. and Forgacs, G., Nova Science (Commack, NY, USA).Google Scholar
[23] Willmore, T.J., “Total Curvature in Riemannian Geometry” (Ellis Horwood Ltd, Chichester, 1982)Google Scholar
[24] M. Mutz and Bensimon, D., Phys. Rev. A43, 4525 (1991).Google Scholar
[25] Baker, G.A., Phys. Rev. Lett. 67(C), 2914 (1991).Google Scholar
[26] Duplantier, B., Phys. Rev. Lett. 67(C), 2915 (1991).Google Scholar
[27] Brochard-Wyart, F. and Gennes, P.G. de, C.R. Acad. Sci. Paris, t.307, II, 1497 (1988).Google Scholar