Published online by Cambridge University Press: 17 March 2011
A-SiGe n-i-p solar cells with i-layer deposited via plasma enhanced chemical vapor deposition (PECVD) with a germane to disilane ratio of 0.72 and hydrogen dilution R=(H2 flow)/(GeH4+Si2H6 flow) values of 1.7, 10, 30, 50, 120, 180 and 240 were deposited on stainless steel substrates. This germane to disilane ratio is what we typically use for the i-layer in the bottom cell of our standard triple-junction solar cells. Solar cell current-voltage curves (J-V) and quantum efficiency (QE) were measured for these devices. Light soaking tests were performed for these devices under 1 sun light intensity at 50° C. While device with R=30 showed the highest initial efficiency, the device with R=120 exhibit higher stabilized efficiency after 1000 hours of light soaking.
Single-layer a-SiGe films (∼500 nm thick) were deposited under the same conditions as the i-layer of these devices on a variety of substrates including 7059 glass, crystalline silicon, and stainless steel for visible-IR transmission spectroscopy, FTIR, and hydrogen effusion studies. It is interesting to note 1) the H content in the film decreased with increasing R based on both the IR and H effusion measurements, and 2) while the H content changes significantly with different R, the change in Eg is relatively small. This is most likely due to a change in Ge content in the film for different R.