Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T02:09:16.977Z Has data issue: false hasContentIssue false

Chromatographic Separation of Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Barry J. Bauer
Affiliation:
barry.bauer@nist.gov, NIST, Polymers, 100 Bureau Drive, stop 8541, Gaithersburg, MD, 20899-8541, United States, 301-975-6849, 301-975-3928
Vardhan Bajpai
Affiliation:
vardhan.bajpai@nist.gov, NIST, Polymers, 100 Bureau Drive, stop 8541, Gaithersburg, MD, 20899-8541, United States
Jeffrey A. Fagan
Affiliation:
jeffrey.fagan@nist.gov, NIST, Polymers, 100 Bureau Drive, stop 8541, Gaithersburg, MD, 20899-8541, United States
Matthew L. Becker
Affiliation:
matthew.becker@nnist.gov, NIST, Polymers, 100 Bureau Drive, stop 8541, Gaithersburg, MD, 20899-8541, United States
Erik K. Hobbie
Affiliation:
erik.hobbie@nist.gov, NIST, Polymers, 100 Bureau Drive, stop 8541, Gaithersburg, MD, 20899-8541, United States
Get access

Abstract

Size exclusion chromatography (SEC) has been used to separate single wall carbon nanotubes (SWNT) dispersed by chemical modification in organic solvents and by DNA in aqueous solution. The chromatographic detection includes size sensitive detectors, multi-angle light scattering (MALS) and intrinsic viscosity (IV), which can provide information on the size and shape of the SEC fractions. The dispersions were also characterized by small angle neutron scattering (SANS) and atomic force microscopy (AFM). Chemical modification was accomplished by covalent attachment of octadecyl amine to acid treated SWNT and by covalent attachment of butyl groups through free radical grafting. Both covalent attachment methods produced dispersions that contained impurities or clusters of SWNT. The DNA dispersions produced the best dispersions, being predominately single nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference List

(1) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787792.Google Scholar
(2) Haddon, R. C.; Sippel, J.; Rinzler, A. G.; Papadimitrakopoulos, F. Mrs Bulletin 2004, 29, 252259.Google Scholar
(3) Certain commercial equipment and materials are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendation by NIST nor does it imply that the material or equipment identified is necessarily the best available for this purpose.Google Scholar
(4) Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Organic Letters 2003, 5, 14711473.Google Scholar
(5) Bauer, B. J.; Hobbie, E. K.; Becker, M. L. Macromolecules 2006, 39, 26372642.Google Scholar
(6) Chattopadhyay, D.; Lastella, S.; Kim, S.; Papadimitrakopoulos, F. Journal of the American Chemical Society 2002, 124, 728729.Google Scholar
(7) Huang, X. Y.; McLean, R. S.; Zheng, M. Analytical Chemistry 2005, 77, 62256228.Google Scholar
(8) Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 302, 15451548.Google Scholar
(9) Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nature Materials 2003, 2, 338342.Google Scholar
(10) Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S. Applied Physics A-Materials Science & Processing 1998, 67, 117119.Google Scholar
(11) Duesberg, G. S.; Blau, W.; Byrne, H. J.; Muster, J.; Burghard, M.; Roth, S. Synthetic Metals 1999, 103, 24842485.Google Scholar
(12) Farkas, E.; Anderson, M. E.; Chen, Z. H.; Rinzler, A. G. Chemical Physics Letters 2002, 363, 111116.Google Scholar
(13) Holzinger, M.; Hirsch, A.; Bernier, P.; Duesberg, G. S.; Burghard, M. Applied Physics A-Materials Science & Processing 2000, 70, 599602.Google Scholar
(14) Niyogi, S.; Hu, H.; Hamon, M. A.; Bhowmik, P.; Zhao, B.; Rozenzhak, S. M.; Chen, J.; Itkis, M. E.; Meier, M. S.; Haddon, R. C. Journal of the American Chemical Society 2001, 123, 733734.Google Scholar
(15) Yang, Y. L.; Xie, L. M.; Chen, Z.; Liu, M. H.; Zhu, T.; Liu, Z. F. Synthetic Metals 2005, 155, 455460.Google Scholar
(16) Zhao, B.; Hu, H.; Niyogi, S.; Itkis, M. E.; Hamon, M. A.; Bhowmik, P.; Meier, M. S.; Haddon, R. C. Journal of the American Chemical Society 2001, 123, 1167311677.Google Scholar
(17) Heller, D. A.; Mayrhofer, R. M.; Baik, S.; Grinkova, Y. V.; Usrey, M. L.; Strano, M. S. Journal of the American Chemical Society 2004, 126, 1456714573.Google Scholar
(18) Mori, S.; Barth, H. G. Size Exclusion Chromatography; Springer: Berlin, 1999.Google Scholar
(19) Grubisic, Z, Rempp, P., and Benoit, H. Journal of Polymer Science, Polymer Letters Edition 5, 753. 1967.Google Scholar
(20) Spatorico, A. L. and Coulter, B. Journal of Polymer Science, Polymer Physics Edition 11, 1139. 1973.Google Scholar