Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T17:47:17.327Z Has data issue: false hasContentIssue false

Characterization of rf-sputtered HfMgZnO thin films

Published online by Cambridge University Press:  25 May 2012

Hantsun Chung
Affiliation:
Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
Jian-Zhang Chen*
Affiliation:
Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
I-Chun Cheng
Affiliation:
Graduate Institute of Photonics and Optoelectronics & Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
*
Get access

Abstract

MgZnO becomes amorphous or short-range-ordered with the addition of hafnium oxide. The films are rf-sputter deposited onto glass substrates (Eagle 2000, Corning Inc.) from Mg0.05HfxZn0.95-xO targets (x=0, 0.025, 0.05, 0.075, 0.1) in pure Ar ambient at room temperature. The sputtered Mg0.05Zn0.95O exhibits strong (002) preferred orientation with XRD peak located at 2θ=34.16o. The XRD peak intensity is also greatly reduced, indicating the material amorphorization proceeds with the addition of Hf. The grain size, estimated from the full-width-at-half-maximum (FWHM) of the (002) XRD peak, decreases from 24.1 to 3.3 nm as the Hf content x increases from 0 to 0.025 in Mg0.05HfxZn0.95-xO. No sharp XRD peaks are detected in the as-sputtered films when more than 5.0 at.% Hf are added into the materials. The films remain in amorphous or short-range-ordered states after annealing at 600 oC for 30 mins. All Mg0.05HfxZn0.95-xO films (100 nm in thickness) are highly transparent (> 80 %) in the visible region from 400 to 800 nm and have sharp absorption edges in the UV region. The tauc bandgap ΔE (eV), as a function of hafnium composition x, is fitted as ΔE=3.336+6.08x for room temperature as-deposited films, and ΔE=3.302+2.60x for films after 30 min 600 oC annealing. The annealing process decreases the bandgap shift caused by the incorporation of Hf in the materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H., Nature 432/7016 (2004) 488.Google Scholar
[2] Jeong, W.H., Kim, G.H., Shin, H.S., Du Ahn, B., Kim, H.J., Ryu, M.K., Park, K.B., Seon, J.B., Lee, S.Y., Appl Phys Lett 96/9 (2010).Google Scholar
[3] Masuda, S., Kitamura, K., Okumura, Y., Miyatake, S., Tabata, H., Kawai, T., J Appl Phys 93/3 (2003) 1624.Google Scholar
[4] Hirao, T., Furuta, M., Hiramatsu, T., Matsuda, T., Li, C.Y., Furuta, H., Hokari, H., Yoshida, M., Ishii, H., Kakegawa, M., IEEE Trans Electron Dev 55/11 (2008) 3136.Google Scholar
[5] Tsai, Y.S., Chen, J.Z., IEEE Trans Electron Dev 59/1 (2012) 151.Google Scholar
[6] Li, C.H., Tsai, Y.S., Chen, J.Z., Semicond Sci Technol 26/10 (2011) 105007.Google Scholar
[7] Ohtomo, A., Shiroki, R., Ohkubo, I., Koinuma, H., Kawasaki, M., Appl Phys Lett 75/26 (1999) 4088.Google Scholar
[8] Wu, H.Z., Liang, J., Jin, G.F., Lao, Y.F., Xu, T.N., IEEE Trans Electron Dev 54/11 (2007) 2856.Google Scholar
[9] Kwon, Y., Li, Y., Heo, Y.W., Jones, M., Holloway, P.H., Norton, D.P., Park, Z.V., Li, S., Appl Phys Lett 84/14 (2004) 2685.Google Scholar
[10] Onodera, A., Tamaki, N., Jin, K., Yamashita, H., Jpn J Appl Phys 1 36/9B (1997) 6008.Google Scholar
[11] Ogawa, Y., Fujihara, S., Phys Status Solidi A 202/9 (2005) 1825.Google Scholar
[12] Kim, G.H., Jeong, W.H., Du Ahn, B., Shin, H.S., Kim, H.J., Kim, H.J., Ryu, M.K., Park, K.B., Seon, J.B., Lee, S.Y., Appl Phys Lett 96/16 (2010).Google Scholar
[13] Ohtomo, A., Takagi, S., Tamura, K., Makino, T., Segawa, Y., Koinuma, H., Kawasaki, M., Jpn J Appl Phys 45/24-28 (2006) L694.Google Scholar
[14] Tsay, C.Y., Cheng, H.C., Wang, M.C., Lee, P.Y., Chen, C.F., Lin, C.K., Surf Coat Technol 202/4-7 (2007) 1323.Google Scholar
[15] Ohtomo, A., Kawasaki, M., Koida, T., Koinuma, H., Sakurai, Y., Yoshida, Y., Sumiya, M., Fuke, S., Yasuda, T., Segawa, Y., Mater Sci Forum 264-2 (1998) 1463.Google Scholar
[16] Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T., Segawa, Y., Appl Phys Lett 75/7 (1999) 980.Google Scholar
[17] Gruber, T., Kirchner, C., Kling, R., Reuss, F., Waag, A., Appl Phys Lett 84/26 (2004) 5359.Google Scholar
[18] Chin, H.A., Cheng, I.C., Huang, C.I., Wu, Y.R., Lu, W.S., Lee, W.L., Chen, J.Z., Chiu, K.C., Lin, T.S., J Appl Phys 108/5 (2010).Google Scholar
[19] Huang, C.I., Chin, H.A., Wu, Y.R., Cheng, I.C., Chen, J.Z., Chiu, K.C., Lin, T.S., IEEE Trans Electron Dev 57/3 (2010) 696.Google Scholar
[20] Thongnum, A., Sa-Yakanit, V., Pinsook, U., J Phys D Appl Phys 44/32 (2011) 325109.Google Scholar
[21] Chin, H.A., Cheng, I.C., Li, C.K., Wu, Y.R., Chen, J.Z., Lu, W.S., Lee, W.L., J Phys D Appl Phys 44/45 (2011) 455101.Google Scholar
[22] Zhou, X.T., Jiang, D.M., Lin, F.T., Ma, X.M., Shi, W.Z., Physica B 403/1 (2008) 115.Google Scholar
[23] Shieh, H.H., Cheng, I.C., Chen, J.Z., Hsiao, C.C., Lin, P.C., Yeh, Y.H., J Electrochem Soc 157/7 (2010) H750.Google Scholar
[24] Chen, J.Z., Li, C.H., Cheng, I.C., Thin Solid Films 520 (2012) 1918.Google Scholar