Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:24:41.505Z Has data issue: false hasContentIssue false

Characterization of Nanostructured Organic-Inorganic Hybrid Materials Using Advanced Solid-State NMR Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Kanmi Mao
Affiliation:
kanmimao@iastate.edu, Ames Laboratory, Ames, Iowa, United States
Jennifer L. Rapp
Affiliation:
jlr48@iastate.edu, Ames Laboratory, Ames, Iowa, United States
Jerzy W. Wiench
Affiliation:
jwiench@iastate.edu, Ames Laboratory, Ames, Iowa, United States
Marek Pruski
Affiliation:
mpruski@iastate.edu, Ames Laboratory, 230 SPEDDING, Ames, 50011-3020, United States, 515-294-2017
Get access

Abstract

We demonstrate the applications of several novel techniques in solid-state nuclear magnetic resonance spectroscopy (SSNMR) to the structural studies of mesoporous organic-inorganic hybrid catalytic materials. Most of these latest capabilities of solid-state NMR were made possible by combining fast magic angle spinning (at ≥ 40 kHz) with new multiple RF pulse sequences. Remarkable gains in sensitivity have been achieved in heteronuclear correlation (HETCOR) spectroscopy through the detection of high-λ (1H) rather than low-λ (e.g., 13C, 15N) nuclei. This so-called indirect detection technique can yield through-space 2D 13C-1H HETCOR spectra of surface species under natural abundance within minutes, a result that earlier has been out of reach. The 15N-1H correlation spectra of species bound to a surface can now be acquired, also without isotope enrichment. The first indirectly detected through-bond 2D 13C-1H spectra of solid samples are shown, as well. In the case of 1D and 2D 29Si NMR, the possibility of generating multiple Carr-Purcell-Meiboom-Gill (CPMG) echoes during data acquisition offered time savings by a factor of ten to one hundred. Examples of the studied materials involve mesoporous silica and mixed oxide nanoparticles functionalized with various types of organic groups, where solid-state NMR provides the definitive characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Samoson, Ago, in Encyclopedia of Nuclear Magnetic Resonance, edited by Grant, D.M.R., Harris, K. (John Wiley & Sons, Chichester, 2002), p. 59.Google Scholar
2. Samoson, A., Tuherm, T., Gan, Z., Solid State Nucl. Magn. Reson. 20, 130 (2001).Google Scholar
3. Du, L. S., Samoson, A., Tuherm, T., Grey, C. P., Chem. Mater. 12, 3611 (2000).Google Scholar
4. Kotecha, M., Wickramasinghe, N. P., Ishii, Y., Magn. Reson. Chem. 45, S221 (2007).Google Scholar
5. Ernst, M., Samoson, A., Meier, B. H., Chem. Phys. Lett. 348, 293 (2001).Google Scholar
6. Ernst, M., Meier, M. A., Tuherm, T., Samoson, A., Meier, B. H., J. Am. Chem. Soc. 126, 4764 (2004).Google Scholar
7. Ishii, Y. and Tycho, R., J. Magn. Reson. 142, 199 (2000)Google Scholar
8. Ishii, Y., Yesionowski, J. P., Tycho, R., J. Am. Chem. Soc. 123, 2921 (2001)Google Scholar
9. Paulson, F. K., Morcombe, C. R., Gaponenko, V., Danchck, B., Byrd, R. A., Zilm, K. W., J. Am. Chem. Soc. 125, 15831 (2003).Google Scholar
10. Wiench, J. W., Bronnimann, C. E., Lin, V. S. -Y., Pruski, M., J. Am. Chem. Soc. 129, 12076 (2007).Google Scholar
11. Reif, B. and Griffin, R. G., J. Magn. Reson. 160, 78 (2003).Google Scholar
12. Zhou, D. H., Shah, G., Cormos, M., Mullen, C., Sandoz, D., Rienstra, C. M., J. Am. Chem. Soc. 129, 11791 (2007).Google Scholar
13. Zhou, D. H. and Rienstra, C. M., Angew. Chem. Int. Ed. 47, 7328 (2008).Google Scholar
14. Elena, B., Lesage, A., Steuernagel, S., Böckmann, A., Emsley, L., J. Am. Chem. Soc. 127, 17296 (2005).Google Scholar
15. Mao, K., Wiench, J. W., Lin, V. S. -Y., Pruski, M., J. Magn. Reson. 196, 92 (2009).Google Scholar
16. Meiboom, S. and Gill, D., Rev. Sci. Instr. 29, 688 (1966).Google Scholar
17. Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S. -Y., Pruski, M., J. Am. Chem. Soc. 127, 7587 (2005).Google Scholar
18. Wiench, J. W., Lin, V. S. -Y., Pruski, M., J. Magn. Reson. 193, 233 (2008).Google Scholar
19. Wiench, J. W., Avadhut, Y. S., Maity, N., Bhaduri, S., Lahiri, G. K., Pruski, M., Ganapathy, S., J. Phys. Chem. B, 111, 3877 (2007).Google Scholar
20. Rapp, J. L., Huang, Y., Natella, M., Cai, Y.,Lin, V. S.-Y., Pruski, M., Solid State Nucl. Magn. Reson,. 35, 82 (2009).Google Scholar
21. Yao, Z., Kwak, H. -T., Sakellariou, D., Emsley, L., Grandinetti, P. J., Chem. Phys. Lett,. 327, 85 (2000).Google Scholar
22. Cai, Y., Kumar, R., Huang, W., Trewyn, B. G., Wiench, J. W., Pruski, M., Lin, V. S. -Y., J. Phys. Chem. C 111, 1480 (2007).Google Scholar